
XMerge Document Conversion SDK

Title: XMerge Document Conversion SDK

Revision Number: v0.1

Date: March 7, 2002

Authors: Brian Cameron
Martin Maher
Mike Hayes

Page 1 of 25

Table of Contents
 Introduction...4

 Glossary of terms...4
 Document Structure...4

 Using the XMerge Conversion Framework...5
 Introduction..5
 Registry...5
 ConverterFactory..5
 Convert, Document and ConvertData...6
 Merging...6

 Framework Overview...8
 Container Classes...8

Document..8
ConvertData..8

 Managing Plugins...9
What is a Plugin?..9
Plugin Registration...10

ConvertInfoMgr...10
ConverterInfo...10
ConverterInfoReader...10

Retrieving Plugins..10
ConverterFactory...11
Convert...11

 Developing a Plugin..12
 Overview..12
 The Plugin Configuration XML File...12

Elements of a Plugin Configuration XML File..12
Root Node..12
Converter Description...13
Converter-display-name..13
Converter-description..13
Converter-vendor...13
Converter-class-impl...13
Converter-xslt-serialize...14
Converter-xslt-deserialize...14
Converter-target...14

 Plugin SPI...15
PluginFactory...16

DocumentSerializerFactory..16
DocumentDeserializerFactory..16
DocumentMergerFactory..16

Converter SPI...17
DocumentSerializer...17
DocumentDeserializer...17

 Merge SPI...18
DocumentMergerFactory...18
Difference Generation..18

Iterators..18
ConverterCapabilities..18

Page 2 of 25

The DiffAlgorithm Interface...19
Generating Differences...19
Using DiffAlgorithm to Generate Differences..19

Merge..20
The MergeAlgorithm Interface...20
Invoking Merge...20
Interfaces and Classes involved in a Merge...21

 Appendices..22
 Appendix A : Lossy Conversion...22
 Appendix B : converter.dtd..22
 Appendix C : Debug and Test Mechanisms...24

Switching on your Debug Properties..24
Debug Properties File...24
Logging methods..24
Testing your Plugin ...25

Page 3 of 25

Introduction
StarOffice and OpenOffice are well-known for the wide variety of high-quality filters, in particular for the
Microsoft Office formats.

The XMerge SDK provides a Java-based framework for converting documents between different formats as
well as a growing set of conversion plugins to read and write each format. Currently HTML and the
StarOffice/OpenOffice Text XML document format are provided, other formats will be released shortly.

The goal of the SDK is to provide a convenient Java API for applications that wish to convert between
formats and to support developers who want to integrate support for their document formats into StarOffice
and OpenOffice.

In addition to format conversion , the XMerge SDK provides a framework for merging changes in one
document format (usually a simpler or lower quality format) into an original document (typically in a richer
format). The benefit of merging is that richer styles or content in the original document are retained, but the
edits made to the simpler format can be applied or merged into the original document.

To meet these goals there are two significant interfaces in XMerge:

� the Conversion API's, used by applications to use a supported format conversion

� the Plugin SPI, which is used by developers who want to add conversion support for a new document
format

Glossary of terms
� Format – a document format such as StarWriter, HTML, Microsoft Word

� Conversion – a translation from one document format to another

� Merging – applying changes made to a simple document format to an original richer document formats

� Lossy – a conversion to a simpler document format that loses some layout, style or even content
information

� Plugin – a provider or adaptor that supports a specific document format

� XMerge Registry – a collection of declarative meta-data about document formats and the supported
capabilities; each format is described by an XML document within each jar file containing a plugin for a
document format

Document Structure
The document is divided into sections for developers with different needs:

� Using the XMerge Conversion Framework describes how to write an application that uses the highest-
level API within the XMerge SDK to easily perform format conversion

� Framework Overview provides a description of the architecture of the XMerge conversion framework

� Developing a Plugin describes how to implement a document format plugin that integrates into the
XMerge framework

Introduction Page 4 of 25

Using the XMerge Conversion Framework

Introduction
 A client interacts with three Java interfaces to access conversion and merge utilities provided by the Small
Device framework.

� An interface for registering plug-ins that perform conversion and/or merge functionality.

� An interface for converting between StarOffice XML format and a small device format.

� An interface for merging changes from the small device format back into an original StarOffice XML
document.

These interfaces have been designed to work in a generic fashion, so that the framework is utilized in the
same fashion regardless of the formats and/or plug-ins being used.

Registry
All plug-ins must have an associated converter.xml file that describes its capabilities. This converter.xml file
is represented in the client by an instance of the ConverterInfo object. A single converter.xml file may
specify the details for more than one plug-in.

When a plug-in is provided in a jar file, it is expected that the jar file will contain the converter.xml file in the
META-INF directory. As a convenience the ConverterInfoReader class has been provided to read in a
given jar file (assuming it contains a META-INF/converter.xml file), and provide a Vector of
ConverterInfo objects.

Once an instance of the ConverterInfo object has been created (via the ConverterInfoReader or
otherwise), it may be registered with the ConverterInfoMgr , which is responsible for keeping track of all
plug-in registration. The ConverterInfoMgr is a singleton class, so only one instance of it may exist in a
given JVM.

The following logic would be used for registering a specific plug-in.

ConverterInfoReader cir = new ConverterInfoReader(
 "file:///path_to_jar/myPlugIn.jar",

 false);
Enumeration jarInfoEnumeration = cir.getConverterInfoEnumeration();
ConverterInfoMgr.addPlugIn(jarInfoEnumeration);

Example 1: Registering a plugin

ConverterFactory
The ConverterFactory provides an instance of the appropriate Convert class for a particular
conversion. The desired conversion can be specified in one of two ways:

1. As a "from-mime-type" and "to-mime-type" combination.

2. By specifying the specific ConverterInfo that describes a plug-in.

Using the XMerge Conversion Framework Page 5 of 25

Convert, Document and ConvertData
The Convert class is capable of converting a document from one specified format to another. A
Document is how a single file is managed within the framework. Different plug-ins may use different
implementations of the Document interface to support the needs of the plug-in. The OfficeDocument
implementation is provided for Documents that use the StarOffice XML format.

The Document .read method is called to set the Document to a specific InputStream. The
Document .write method is called to write the Document to a client-supplied OutputStream. The
Convert method provides a getOfficeDocument and getDeviceDocument methods so that the client
can easily access the appropriate Document types to be used for a given conversion.

The ConvertData class is used as the mechanism for passing one or more Document objects in and out
of the Convert class. This is useful in conversions that can create multiple files. For example, a word
processing document with an embedded image might be converted to two files, a HTML file and a separate
image file (GIF or JPEG).

The Convert class manages the input ConvertData , so the client only needs to access the
Convert .addInputStream method as many times as is appropriate to add the appropriate number of
input Document objects.

After specifying the input in this fashion, the client calls the Convert .convert method, which returns a
ConvertData object containing the converted Document objects. The client can iterate over each output
Document within the ConvertData class and write them to user-provided OutputStream object(s).

An example of interacting with the ConvertData and Convert classes follows, omitting needed try/catch
blocks to make the code more readable:

ConverterFactory cf = new ConverterFactory();
Convert conv = cf.getConverter("staroffice/sxw","destination_mime_type");
FileInputStream fis = new FileInputStream("fileToConvert.sxw");
conv.addInputStream(processFile, fis);
ConvertData dataOut = conv.convert();
Enumeration docEnum = dataOut.getDocumentEnumeration();

while (docEnum.hasMoreElements()) {
 Document docOut = (Document)docEnum.nextElement();
 String fileName = docOut.getFileName();
 FileOutputStream fos = new FileOutputStream(fileName);
 docOut.write(fos);
 fos.flush();
 fos.close();
}

Example 2: Using the Framework API to convert a document

Merging
Merge is useful when an OfficeDocument is converted to a Device Document format, and the Device
Document version is modified. Those changes can be merged back into the original OfficeDocument
with the merger. The merger is capable of doing this even if the Device format is lossy in comparison to the
OfficeDocument format.

The client accesses the merger from the Convert object via the getDocumentMerger method, which
takes the original OfficeDocument in the constructor. The client must utilize the
Convert .getOfficeDocument method in order to build this original OfficeDocument . Before calling
the DocumentMerger.merge method, the client must first convert the device Document to an

Using the XMerge Conversion Framework Page 6 of 25

OfficeDocument . The DocumentMerger .merge method is called with the device OfficeDocument as
its argument. When the DocumentMerger .merge method is called, the merged output is placed in the
original OfficeDocument .

An example of interacting with the DocumentMerger object follows, omitting needed try/catch blocks to
make the code more readable:

String mergeFile = "origDoc.sxw";
FileInputStream mergeIS = new FileInputStream(mergeFile);
Document mergeDoc = myConvert.getOfficeDocument(mergeFile, mergeIS);DocumentMerger
merger = myConvert.getDocumentMerger(mergeDoc);
if (merger ! = null) // if merger is not null, merge is supported
{
 // dataOut is the device file converted to an OfficeDocument, the
 // output of the Convert.convert method.
 Enumeration mergeEnum = dataOut.getDocumentEnumeration();
 Document converted = (Document)mergeEnum.nextElement();
 merger.merge(convertedFile);
 String fileName = converted.getFileName();
 FileOutputStream fos = new FileOutputStream(fileName);
 mergeDoc.write(fos);
 fos.flush();
 fos.close();
}

Example 3: Using DocumentMerger to do a merge

Using the XMerge Conversion Framework Page 7 of 25

Framework Overview
The Converter framework is that part of the code that allows the client to use a simple interface to build
manage and run conversions and merge(s). It also provides the mechanism by which plugins can be
retrieved by the client. It was written to be as generic as possible to enable third party plugins to be written
quickly and easily.

Document Handling
There are two container classes accessible in the xMerge API. The most basic container is a Document . In
order to support file formats that can have multiple files in one document (e.g. HTML) the xMerge API also
provides a ConvertData class. A ConvertData class consists of a Vector of Document objects and a
String containing the name of the document being stored.

Document

Document is an interface consisting of the following four methods :

� void read(InputStream is)

� void write(OutputStream os)

� String getName(void)

� String getFileName(void)

Most of the implementation work for this interface is done in reading from InputStream s to some internal
representation (that can be used to convert to some other format) or writing from this representation to an
OutputStream . The getName method returns the name of the Document excluding the file extension,
getFileName returns the name of the Document including the file extension.

ConvertData

ConvertData is a container class for multiple Document objects. This is especially useful when handling
multiple files which are part of the one document. It can also be used if handling multiple documents. It has
two member variables :

� Vector v

� String name

The documents are added to the Vector using the addDocument method. The Documents contained in
the vector are accessed using an Enumerator returned from the getDocumentEnumeration method.
Other functions used in this class are :

Framework Overview Page 8 of 25

Figure 1: Container Class
Organization

 Document

 name
ConvertData

� void reset()

� String getName()

� String getName()

� int getNumDocuments()

The reset method enables reuse of a ConvertData object. getName and setName can be used for
getting and setting the document represented by the ConvertData .getNumDocuments returns the
number of documents contained in ConvertData .

Managing Plugins
The object which provides the ability to register and to retrieve a plugin to enable document conversion and
merger is the ConverterFactory class. It is through this class that Convert objects are returned and
these can be then used to do the conversion using ConvertData 's.

What is a Plugin?
A plugin contains classes that extends the PluginFactory abstract class and optionally one or more of
the following interfaces : DocumentSerializerFactory , DocumentDeserializerFactory and
DocumentMergerFactory . The plugin implements these interfaces depending on the functionality they
want to provide in the plugin implementation.

A plugin also contains an XML Configuration file which describes it's main classes and provides some
information about the plugin. This allows plugins to be dynamically loaded by an application, without having
specific knowledge of the implementation classes for that plugin beforehand.

The plugin capabilities can be discovered using introspection to determine which interfaces the plugin
implements. For instance a plugin that implements the DocumentMergerFactory is capable of performing
merges.

A plugin may implement up to seven interfaces :

� DocumentSerializer

� DocumentSerializerFactory

� DocumentDeserializer

� DocumentDeserializerFactory

� DocumentMerger

� DocumentMergerFactory

Framework Overview Page 9 of 25

Figure 2Overview of SDK

� PluginFactory

The DocumentDeserializer interface describes the deserialize method responsible for converting from
a Device Document to an Office Document . The DocumentSerializer interface describes the serialize
method responsible for converting from an Office Document to a Device Document . The
DocumentMerger interface defines a merge method that is used to merge two Office Documents together.
The equivalent interface Factories return an instance of one of the three interfaces above.

The PluginFactory abstract class defines only two methods (createOfficeDocument and
createDeviceDocument). The PluginFactory implementation however can optionally implement any
of the three other interfaces (DocumentSerializer , DocumentDeserializer or DocumentMerger).

Plugin Registration

Each plugin registers itself with the framework by providing an XML document called converter.xml which
describes that particular plugins conversion and/or merge capabilities. This file must be included within each
plugin jar file. The framework accesses this capabilties information using the ConverterInfo class.

functionality is not accessed directly, it is provided to the client by the registry as a ConverterInfo class
which provides a PluginFactory Implementation. In order for the registry to keep track of which
conversions are possible each plugin must provide a converter.xml. The converter.xml is stored in the
plugins jarfile. The ConvertInfoReader is a helper class which is capable of pulling the converter.xml out
of the jarfile so it can be stored in the registry by the ConvertInfoMgr .

The ConverterInfoMgr as it's name suggest manages a set of ConverterInfo objects. A
ConverterInfo is simply a set of the attributes described in the converter.xml.

ConvertInfoMgr

The ConvertInfoMgr is a singleton that adds ConverterInfo objects to a Vector it maintains. It also
has methods to return a ConverterInfo based on the mime types of the original and destination file
formats. This is used by the ConverterFactory to return convert objects which will be described in
Retrieving Plugins .

ConverterInfo

The ConverterInfo consists of a set of fields that describe a plugin. These fields are read in from the
converter.xml. It is the Client's responsibility to add jarfiles that contain these converter.xml's although the
client usually does not deal directly with ConverterInfo (see ConverterInfoReader). Apart from
getter's to read the various fields of the ConverterInfo there is also three functions to return instances of
DocumentDeserializer , DocumentSerializer and DocumentMerger . It is these instances that the
Convert class uses to do the requested operation.

ConverterInfoReader

The ConverterInfoReader is a helper class that can be used to read a converter.xml from a jarfile. The
jarfile can be passed in using the ConvertInfoReader constructor along with a boolean flag indicating
whether validation should be done or not. It has a method called getConverterInfoEnumeration that
returns a Enumeration which can be added directly to the ConverterInfoMgr .

Framework Overview Page 10 of 25

Retrieving Plugins

Once the plugins have been registered the ConverterFactory can be used to return a Convert class by
simply passing in the mime types of the original and destination file formats. This Convert class can then
be used to to do the conversion.

ConverterFactory

The ConverterFactory is a simple class that is really just a wrapper around the ConvertInfoMgr . It
provides two methods. the canConvert method which takes in two mime types and will return a boolean
indicating if the conversion can be done. The second method getConverter takes in the same two mime-
types and instead of returning a boolean returns a Convert class which can be used to do the conversion.
There is a second implementation of getConverter which takes in a ConverterInfo and boolean (to
indicate direction) instead of two strings indicating mime types.

Convert

The Convert class is returned from the ConverterFactory . It has a member variable consisting of a
ConverterInfo which contains an instance of the Plugin needed for the conversion indicated in the call to
getConverter in the ConverterFactory . It has an addInputStream which is given a stream and
filename. It will construct a document using the plugin implementation of createDeviceDocument or
createOfficeDocument depending on the direction of the conversion. This document is then added to
the input ConvertData and is passed to the converter implementation. It also has a
getDeviceDocument and getOfficeDocument so documents can be created on the client side. The
clone and reset function were added to allow reuse of the Convert object.

The most important method is obviously the convert method which will, depending on direction, use the
instance of the plugin implementation contained in the ConverterInfo to call serialize or deserialize. This
will return a ConvertData which can be enumerated over to return documents. The converted document
can then be written to an OutputStream via the Documents write method.

Framework Overview Page 11 of 25

Figure 4: Using ConverterInfoMgr to retrieve plugin

 Figure 3: Loading plugins from JAR file

jarFile ConverterInfoReader ConverterInfoMgr

getConverterInfoEnumeration

ConvertConvertData ConvertData

getConverter

(mimeTypeIn, mimeTypeOut)

DestinationOriginal

ConverterFactory ConverterInfoMgr
(singleton)

Constructor

Developing a Plugin
The Framework Overview section describes the main interfaces that make up a plugin.

The Plugin Configuration XML File
The Plugin Configuration file is an XML file that describes such things as the name of the PluginFactory
implementation class for a plugin, as well as vendor, version and other descriptive text.
When implementing a converter, the implementer must provide a Plugin Configuration file for that plugin
which allows the plugin to be self-describing.
Note that the current framework does not validate the configuration files against the DTD.

A DTD for plugin configuration files is described below and the full text of the DTD appears in Appendix A.

Note that more than one conversion can be described in a Plugin Configuration file. This means that a
plugin can be implemented which contains more than one implementation.

Note that it is also possible for a converter to convert to multiple target types.

Elements of a Plugin Configuration XML File

The DTD for Plugin Configuration files is relatively short and has only a few mandatory elements. Many of
the elements and attributes are simply descriptive items for use by client applications.

Root Node
XML Code : converters

Description All converter plugin information files must have this node as their document root.

Status Required

DTD <!ELEMENT converters (converter)+>

Developing a Plugin Page 12 of 25

Converter Description
XML Code : converter

Description The converter node contains the description of the a conversion/merge made
available within the plugin. A plugin may be able to handle more than one
conversion and merge, therefore there may be more than one converter node.

The type attribute describes the mime type of the office document that this
plugin supports.

The version attribute is an implementer specified version number.

Status Required

There may be more than one converter node.

DTD <!ELEMENT converter (converter-display-name,
 converter-description?,
 converter-vendor?,
 converter-class-impl,
 converter-xslt-serialize?,
 converter-xslt-deserialize?,
 converter-target+)>
<!ATTLIST converter type CDATA #REQUIRED>
<!ATTLIST converter version CDATA #REQUIRED>

Converter-display-name
XML Code : converter-display-name

Description This is human readable string provided by the plugin implementer that provides
a name for the plugin for listing/inspecting purposes.

Status Required

DTD <!ELEMENT converter-display-name (#PCDATA)>

Converter-description
XML Code : converter-description

Description This is human readable string provided by the plugin implementer that describes
the plugin.

Status Optional

DTD <!ELEMENT converter-description (#PCDATA)>

Converter-vendor
XML Code : converter-vendor

Description The name of the individual implementing the converter.

Status Optional

DTD <!ELEMENT converter-vendor (#PCDATA)>

Developing a Plugin Page 13 of 25

Converter-class-impl
XML Code : converter-class-impl

Description The full name and the class that implements the PluginFactory interface for this
conversion. This class is instantiated in order to get access to convert and
merge functionality.

Status Required

DTD <!ELEMENT converter-class-impl (#PCDATA)>

Converter-xslt-serialize
XML Code : converter-xslt-serialize

Description For use with any plugin that wants to use the XSLT plugin for transforming
document using XSLT.
This element specifies an URL to and XSLT that is used for serializing office
documents to a lossy format.

NB : It is assumed that the conversion specified by converter-class-impl will
make use of this XSLT.

Status Optional

Even if present, this only has meaning for converters that use the XSLT plugin.

DTD <!ELEMENT converter-xslt-serialize (#PCDATA)>

Converter-xslt-deserialize
XML Code : converter-xslt-deserialize

Description For use with any plugin that wants to use the XSLT plugin for transforming
document using XSLT.
This element specifies an URL to and XSLT that is used for deserializing lossy
format documents to office documents.

NB : It is assumed that the conversion specified by converter-class-impl will
make use of this XSLT.

Status Optional

Even if present, this only has meaning for converters that use the XSLT plugin.

DTD <!ELEMENT converter-xslt-deserialize (#PCDATA)>

Converter-target
XML Code : converter-target

Description The mime-type specified in the type attribute of this node indicates that a
conversion is supported between this type and the type attribute of the
converter node.

Status Required

There may be more than one target.

DTD <!ELEMENT converter-target EMPTY>
<!ATTLIST converter-target type CDATA #REQUIRED>

Developing a Plugin Page 14 of 25

Plugin SPI
The Plugin SPI consists of:

� Top level Plugin SPI interfaces

� Converter SPI

� Merge SPI

Developing a Plugin Page 15 of 25

Figure 5: Plugin SPI Classes

Figure 5 shows the major interfaces and class hierarchy within the Plugin SPI (though some of the
interfaces of the Merge SPI are not shown).

A plugin implementer can choose the functionality they want to provide by extending the PluginFactory
interface, and then optionally implementing those interfaces they require from the Merge and Convert SPI

PluginFactory

PluginFactory is an abstract class which provides methods for creating Office and Device documents
from input streams passed to the plugin. A plugin implementer must extend this class when implementing a
plugin.

DocumentSerializerFactory

This interface provides a method for returning an instance of the DocumentSerializer class.
Implementing this class provides access to a means of writing a given Office document to Device specific
format.

Users of the plugin can query the PluginFactory implementation class using introspection to see if this
interface is implemented. If it is implemented then a specific Office to device conversion is possible.

DocumentDeserializerFactory

Similar to the DocumentDeserializerFactory , this interface provides a factory method for returning an
instance of the DocumentDeserializer class. Implementing this class provides access to a means of
writing a given device document to a particular Office format.

Again, users of the plugin should use introspection to query the PluginFactory implementation class to
see if this interface is implemented. If it is implemented then a the user knows that the specific device to
Office document conversion is possible.

DocumentMergerFactory

The factory method of DocumentMergerFactory - createDocumentMerger() provides access to the
Merger API by returning an instance of a DocumentMerger implementation.

Again, users of the plugin should use introspection to query the PluginFactory implementation class to
see if this interface is implemented. If it is implemented then a the user knows that this plugin supports
merging.

Developing a Plugin Page 16 of 25

Converter SPI
The Converter provides interfaces which a plugin should implement if it wants to be able to write from Office
format to Device format and vice versa

DocumentSerializer

The DocumentSerializer Interface provide the serialize method for converting an Office document
to a device document.

A serializer is created by calling the DocumentSerializerFactory method
createDocumentSerializer which takes an instance of the Document class as a parameter. This
Document object is the object to be serialized, so the plugin implementation should keep a reference to this
class.

ConvertData demoSerialize(DocumentSerializerFactory factory,
Document doc)

{
 ser = factory.createDocumentSerilizer(doc);
 return ser.serialize();
}

Example 4: Serialization Example

Note that the serialize method must return it's result in a ConvertData object - this is because a
serialize method call may result in more than one device document being created. See ConvertData
for more details.

DocumentDeserializer

The process for converting from a device format to OpenOffice format is very similar to the previous step. In
this case a DocumentDeserializer is required which is acquired by calling the
DocumentDeserializerFactory createDocumentDeserializer method and passing a
ConvertData which contains the device documents that are to be serialized.

Document demoDeserialize(DocumentSerializerFactory factory,
ConvertData docs)
{
 DocumentDeserializer deser =

 factory.createDocumentDeserializer(docs);
 return deser.deserialize();
}

Example 5: Deserialization Example

Calling the DocumentDeserializer.deserialize method causes the data from the device document to be
read from the ConvertData object and converted into a DOM tree which is maintained internally by the
Document implementation class. Calling Document.write invokes the implementation class to write out the
document as a OpenOffice document.

Developing a Plugin Page 17 of 25

Merge SPI
The Merge SPI provides interfaces for generating differences between two documents as well as merging
those differences to create a new document. These interfaces include :

� DiffAlgorithm

� MergeAlgorithm

� Iterator

The Merge SPI is designed to merge a rich format XML file with a lossy version of that document which has
been edited. The term lossy is explained below.

Some implementations of these interfaces are provided in the current framework which are suitable for
many of the basic merge tasks. These are discussed later in the document.

DocumentMergerFactory

This class provides a factory method for getting a DocumentMerger instance. The instance returned by
this method implements the DocumentMerger interface and this implementation class handles the details
of the merge itself.

Difference Generation

In the discussion below the term "original document" refers to the original OpenOffice XML document which
has been parsed into a DOM tree and which is encapsulated in an implementation class of the Converters
Document interface. The term "modified document" refers to the device format document which has been
deserialized to a DOM tree and is also encapsulated in a converters Document interface.

The difference process makes use of several interfaces discussed below. Several of these classes are also
used in the merge process. Also, note that the output of the difference process forms the input to the merge
process.

Iterators

Both the difference and the merge algorithms make use of the Converter Iterator interface. This permits
the difference and merge algorithms to traverse the input documents and compare their contents in an
implementation independent way.

The NodeIterator class implements the Iterator interfaces. This provides a more DOM specific iterator
which can be extended to create iterators specific to particular document formats. There are currently four
such classes which extend NodeIterator to provide document specific iterators when traversing the DOM
tree of Writer and Calc documents. These are CellNodeIterator , ParaNodeIterator , RowIterator and
TextNodeIterator . If support is required for a converter for, say, OpenOffice Presentation documents,
further iterators would be required to traverse the structure of OpenOffice Presentation documents.

ConverterCapabilities

When you create an instance of a specific iterator, you have to have an instance of an object which
implements the ConverterCapabilities class. ConverterCapabilities specifies which OpenOffice
document tags and attributes are supported in the device document format. The
ConverterCapabilities.canConvertTag and ConverterCapabilities.canConvertAttribute return
either true of false depending on whether the device document can support the given tag or attribute.

Developing a Plugin Page 18 of 25

The DiffAlgorithm Interface

Access to any of the difference algorithms is provided by the DiffAlgorithm interface. All difference
generation algorithms should implement this interface.

The DiffAlgorithm interface has one method, computeDifferences , which takes as input two iterators -
one for the original document and one for the modified document - and returns a vector of Difference
object.

The Difference class encapsulates information about where a difference occurs - it reports the type of
difference (add, change or delete) and where the difference arises between the original and the modified
document.
For example, if the difference object holds "2" for original position, "3" for modified position and "change" for
the operation, it means, that the 2nd node of the original iterator has changed into the 3rd node of the
modified iterator, so we have to perform a merge between these 2 nodes.

Because the difference and merge are two separate steps, it is possible to do multiple passes of difference
generation for two document from different granularity. For example, to merge two Writer based documents,
a paragraph Iterator can be used first to generate differences on a paragraph basis. If there are any
changes in a certain paragraph, a word Iterator can be created from that paragraph content and a word-
level difference generation can then be performed.
A similar process is applied to Spreadsheet documents - difference generation can be performed first at the
worksheet level, then the row level then the sheet level and so on.

The multi-pass approach allows the framework to choose the difference algorithm to apply based on the
content it encounters in the document. So if we encounter a table while performing a difference on a
paragraph of text, we can switch to a more appropriate difference algorithm which works better on tables.

Generating Differences

There are two basic steps required to generate the set of differences. First creates a "difftable" based on the
two iterators. A difftable is an (N × K) matrix where :

N = A + 1; A = number of objects (nodes) in original iterator
K = B + 1; B = number of objects (nodes) in modified iterator

When complete, the matrix specifies the nodes that have remained the same and the nodes that have
changed between the two documents.

Then generate a vector of Difference objects from this matrix. These objects represent the operations that
have to be performed on the original document, to create a document that is logically equivalent to the
modified document in the device.

To illustrate the process we will look at how this process is applied to the difference generation for a
fictitious device document to SXW merge.

Developing a Plugin Page 19 of 25

Using DiffAlgorithm to Generate Differences
public Difference [] diff(Document mod, Document orig,

ConverterCapabilities cc,)
{
 SxwDocument wdoc1 = (SxwDocument) orig;
 SxwDocument wdoc2 = (SxwDocument) mod;
 Document doc1 = wdoc1.getContentDOM();
 Document doc2 = wdoc2.getContentDOM();
 Iterator i1 = new ParaNodeIterator(cc, doc1.getDocumentElement());
 Iterator i2 = new ParaNodeIterator(cc, doc2.getDocumentElement());
 DiffAlgorithm diffAlgo = new IteratorLCSAlgorithm();
 // find out the paragraph level diffs
 Difference[] diffTable = diffAlgo.computeDiffs(i1, i2);
 return diffTable;
}

Example 6: Difference Generation

The DOM trees of both documents are retrieved and an appropriate iterator - the ParaNodeIterator class in
this case - is instantiated for each DOM tree.

The iterator takes as a parameter to its constructor an instance of the ConverterCapabilities class for the
specific document type. The ConverterCapabilities specify which OpenOffice document tags and
attributes are supported on the device document format.

Next, an instance of an appropriate DiffAlgorithm is created, in this case the IteratorLCSAlgorithm ,
and the Difference vector is created. This vector forms the input to the merge.

Note that the merge algorithm needs access to the iterators used to generate the differences - they are
an input to the applyDifference method call during merge.

Merge

The merge process works on the principle of taking two DOM trees and iterating over them to create a new
DOM tree that represents the "most-up-to-date" version of the document. Nodes for the new merged DOM
tree are selected based on the differences generated by the difference process as described above.

The present merge API supports a 2 way merge -this is when you modify a document on a device and you
want to merge it back to the original OpenOffice document.

3-way merges are not currently supported. A 3-way merge is required when both the original document
and the device document have been modified, and the changes from both need to be merged
together.

The MergeAlgorithm Interface

The MergeAlgorithm interface has a single method, applyDifference() which takes as input two iterators
- an iterator for the original document, and an iterator for the modified document - and the generated
Difference vector. All merge algorithms should implement this interface. In order to carry out a merge you
need to instantiate an instance of a class that implements the MergeAlgorithm interface and call its
applyDifference() method.

Invoking Merge

The code fragment below illustrates the merge() method of the class that implements the
DocumentMerger interface for a fictitious device document.

Developing a Plugin Page 20 of 25

public void merge(Iterator i1, Iterator i2, ConverterCapabilities cc,)
// merge the paragraphs
NodeMergeAlgorithm charMerge = new CharacterBaseParagraphMerge();
DocumentMerge docMerge = new DocumentMerge(cc_, charMerge);
docMerge.applyDifference(i1, i2, diffTable);

}

Example 7: Applying Differences

The general document merging class DocumentMerge is instantiated. DocumentMerge is an implementation
of the MergeAlgorithm interface. This class will merge two Document classes. It utilizes the appropriate
class that implements the NodeMergeAlgorithm interface - which in this case is
CharacterBaseParagraphMerge instance. Then the applyDifference() method is called which takes as
it's parameters the two iterators used to perform the difference run, and the difference vector resulting from
the difference generation.

Interfaces and Classes involved in a Merge

Classes implementing the MergeAlgorithm are responsible for processing the Difference vector and finding the
location where additions, deletions and merges takes place and then making the appropriate changes.
Where merges are required, the class that implements MergeAlgorithm invokes the NodeMergeAlgorithm.merge
method of the object that was passed to it's constructors to do the actual merging. Otherwise it manipulates DOM
nodes directly using the DOM API

The merge is performed on the original document DOM tree. This implies that the Document instance
that encapsulates this DOM tree holds the result of the merge.

Developing a Plugin Page 21 of 25

Appendices

Appendix A : Lossy Conversion
When a user makes a change to a document on a device, the merge process determines the changes
made and applies these changes to the unchanged original OpenOffice document. It is important to note
that the original OpenOffice document is needed to determine the changes made on the device document.
This allows the merge to restore features that were not available in the device application where the
document was edited. Once these changes are applied, the user of the specific converter can replace the
original OpenOffice document with the document which includes the edits made on the device. Note that
due to unsupported features on the device, the conversion process from OpenOffice document to device
document is "lossy".

An instance of lossy conversion can be seen when converting a Office Writer document to a device format
that does not support lists. So – for the purposes of this example - the Converter for this document type
converts each Office Writer list item to an individual paragraph. When converting back from the device
format to Office Writer XML we expect to be able restore the list items by using the formatting information
contained in the original Office Writer document.
However ambiguities arise when the user modifies one of the "list paragraphs" of the device document?
What happens when the user adds text immediately after one of the "list paragraphs" on device? Did the
user intend it to be a new list item, or a new paragraph of text. The user can make many other changes in
and around the "list paragraphs" which are also ambiguous.

The only way to handle these modifications during the conversion from device format to Office Writer XML is
to develop a set of heuristics where the merge tries to interpret what the user intended when editing on the
device. These heuristics may accurately predict the user's intentions the majority of the time, but there will
be cases when they will produce erroneous results. It may be desirable in certain circumstances to provide
feedback for the user in order for them to decide what action should be taken.

Appendix B : converter.dtd

<!-- converter.dtd
 Author: Brian Cameron
 This DTD file is provided for documentation and development
 purposes, the converter does not actually validate the
 converter.xml files that it processes. Plug-ins will not
 work properly, though, if the converter.xml does not
 conform to this DTD specification. -->
<!-- The root node, converters, must contain one or more
 converter nodes, each corresponds to a converter plug-in. -->
<!ELEMENT converters (converter)+>
<!-- The converter node must contain two elements:
 type - The convert-from mime-type.
 version - The version of the plug-in.

 Each converter node must contain these child nodes:
 converter-display-name - Name of the converter
 converter-class-impl - The PluginFactory implementation for
 the plugin
 converter-targets - Can be one or more of these nodes. Each
 contains only a "type" element. This
 "type" element specifies the convert-to
 mime-type.

Appendices Page 22 of 25

 Each converter node may contain these child nodes:
 converter-description - Descriptive description of the plug-in.
 converter-vendor - Plug-in vendor name
 converter-xslt-serialize - The URL of the xsl stylesheet for
 serialization. This stylesheet must
 exist if the xslt plugin implementation
 is to be used. It is assumed that the
 plug-in specified via converter-class-impl
 will make use of this value.
 converter-xslt-deserialize - The URL of the xsl stylesheet for
 deserialization. This stylesheet must
 exist if the xslt plugin implementation
 is to be used. It is assumed that the
 plug-in specified via converter-class-impl
 will make use of this value.

 -->

<!ELEMENT converter (converter-display-name,
 converter-description?,
 converter-vendor?,
 converter-class-impl,

 converter-xslt-serialize?,
 converter-xslt-deserialize?,

 converter-target+)>

<!ATTLIST converter type CDATA #REQUIRED>
<!ATTLIST converter version CDATA #REQUIRED>

<!ELEMENT converter-display-name (#PCDATA)>
<!ELEMENT converter-description (#PCDATA)>
<!ELEMENT converter-vendor (#PCDATA)>
<!ELEMENT converter-class-impl (#PCDATA)>
<!ELEMENT converter-xslt-serialize (#PCDATA)>
<!ELEMENT converter-xslt-deserialize (#PCDATA)>

<!ELEMENT converter-target EMPTY>

<!ATTLIST converter-target type CDATA #REQUIRED>

Appendices Page 23 of 25

Appendix C : Debug and Test Mechanisms
The Debug class is a helper class designed to provide a mechanism for logging debug messages. It is
designed as a singleton class. It can be included in a file using the following import:

import org.openoffice.xmerge.util.Debug;

Figure 6: Importing debugging class

Switching on your Debug Properties

To enable your debugging settings, you must set up Java to pick up your Debug.properties file first in
your Java CLASSPATH. You can do this in two ways.

� Create the directory stucture org/openoffice/xmerge/util in a directory of your choosing and place your
Debug.properties file there. Then add the directory to your CLASSPATH.

cd /export/home/xmerge
mkdir -p org/openoffice/xmerge/util
cp ~/Debug,properties /export/home/org/openoffice/xmerge/util/.
export CLASSPATH=/export/home/xmerge:$CLASSPATH

Example 8 : Adding a Debug.properties from a directory

� Alternatively, package your Debug.properties in a JAR file. The Debug.properties file must be in
the package org.openoffice.xmerge.util within that JAR file. Then, add the JAR file containing
Debug.properties to the beginning of the CLASSPATH.

Debug Properties File

There are three basic levels of debug messages that can be used Info, Error, Trace. These properties are
set to either true or false in the Debug.properties file . The output an also be set to System.out,
System.err or to a file using the debug.output property. Below is a sample Debug.properties file

#
Debug Logging information and settings
#
debug.info=true
debug.trace=true
debug.error=true
debug.output=System.err

Example 9: Sample Debug.properties file

Logging methods

There are 4 different logging methods in the debug class.

� logSystemInfo()

This will log platform information including the operating system name version and platform as well as
the JDK version and vendor.

� logTime()

This logs a time-stamp which includes the date and the time.

Appendices Page 24 of 25

� log(int, String)

This sets the debug level of the message being logged. If this level has been set to true in the
Debug.properties file then the message will be logged.

� log(int, String, Throwable)

This is the same as the previous log method except it will also log a stack trace of the exception passed
in.

Testing your Plugin

The Driver.java in xMerge is the client program used to test plugins. The following is the usage message
displayed if you run Driver.java without any arguments

Usage:
java org.openoffice.xmerge.test.Driver <args>
where <args> is as follows:
-from <MIMETYPE> -to <MIMETYPE> [-merge <OrigDoc>] <document>

Figure 7: Driver Usage Message

The first thing the Driver.java does is to load the converterInfoList.properties file to read in the list of jarfiles
that correspond to conversion plugins. Below is a sample converterInfoList.properties

#
Sample convertInfoList.properties
#
jarname1=file:///jarDirectory/someOtherPlugin.jar
jarname2=file:///jarDirectory/myPlugin.jar

Example 10: Sample ConvertInfoList.properties

Once the plugins have been registered the Driver parses the command line. This consists of looping
through the arguments finding the -from -to and -merge (if it is present) keywords and assigning each
argument to the correct variable. These “from” and “to” mime types are what is used by
ConverterFactory 's getConverter call to return a plugin to do the conversion so it it important these
are correct and correspond to mime types in the plugin's converter.xml.

The next section is where the actual conversion takes place in the doConversion method. This method
needs to do a lot of exception handling and error checking to return useful messages if there is a problem.
The actual code to do the conversion is quite small and does the following steps.

1. Constructs a ConverterFactory and gets the Convert class with a call to getConverter .

2. Adds the file(s) to be converted by making a call to ConverterFactory 's addInputStream .

3. Makes a call to the convert() method to do the conversion and returns a ConvertData .

4. If no merge is specified, enumerates over the ConvertData writing each element out to file.

5. If merger is specified, creates a DocumentMerger and does a merge using the Document output from
the conversion process. Writes out resultant Document .

The Driver should require no modification to work with any given plugin, unless there is a very specific task
you want it to do. Generally, it should be enough to modify the converterinfolist.properties file to point to
your plugin.

Appendices Page 25 of 25

