
OpenOffice.org's Documentation of the

Microsoft Compound Document

File Format

Author Daniel Rentz ✉ mailto:dr@openoffice.org http://sc.openoffice.org

License Public Documentation License

Contributors

Other sources Hyperlinks to Wikipedia (http://www.wikipedia.org) for various extended information

Mailing list ✉ mailto:dev@sc.openoffice.org
Subscription ✉ mailto:dev-subscribe@sc.openoffice.org

Download PDF http://sc.openoffice.org/compdocfileformat.pdf
XML http://sc.openoffice.org/compdocfileformat.odt

Project started 2004-Aug-30

Last change 2007-Aug-07

Revision 1.5

mailto:dr@openoffice.org
http://sc.openoffice.org/compdocfileformat.sxw
http://sc.openoffice.org/compdocfileformat.sxw
http://sc.openoffice.org/compdocfileformat.sxw
http://sc.openoffice.org/compdocfileformat.pdf
http://sc.openoffice.org/compdocfileformat.pdf
http://sc.openoffice.org/compdocfileformat.pdf
mailto:dev-subscribe@sc.openoffice.org
mailto:dev-subscribe@sc.openoffice.org
mailto:dev-subscribe@sc.openoffice.org
mailto:dev@sc.openoffice.org
mailto:dev@sc.openoffice.org
mailto:dev@sc.openoffice.org
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://sc.openoffice.org/
http://sc.openoffice.org/
http://sc.openoffice.org/
mailto:dr@openoffice.org
mailto:dr@openoffice.org

Contents

1 Introduction ... 3
1.1 License Notices 3
1.2 Abstract 3
1.3 Used Terms, Symbols, and Formatting 4

2 Storages and Streams ... 5

3 Sectors and Sector Chains ... 6
3.1 Sectors and Sector Identifiers 6
3.2 Sector Chains and SecID Chains 7

4 Compound Document Header ... 8
4.1 Compound Document Header Contents 8
4.2 Byte Order 9
4.3 Sector File Offsets 9

5 Sector Allocation ... 10
5.1 Master Sector Allocation Table 10
5.2 Sector Allocation Table 11

6 Short-Streams .. 12
6.1 Short-Stream Container Stream 12
6.2 Short-Sector Allocation Table 12

7 Directory .. 13
7.1 Directory Structure 13
7.2 Directory Entries 15

8 Example ... 17
8.1 Compound Document Header 17
8.2 Master Sector Allocation Table 19
8.3 Sector Allocation Table 19
8.4 Short-Sector Allocation Table 20
8.5 Directory 21

9 Glossary ... 24

2

1 Introduction

1 Introduction

1.1 License Notices

1.1.1 Public Documentation License Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the "License"); you
may only use this Documentation if you comply with the terms of this License. A copy of the License is available at
 http://www.openoffice.org/licenses/PDL.html.
The Original Documentation is "OpenOffice.org's Documentation of the Microsoft Compound Document File Format".
The Initial Writer of the Original Documentation is Sun Microsystems, Inc., Copyright © 2003. All Rights Reserved.
See title page for Author contact and Contributors.
All Trademarks are properties of their respective owners.

1.1.2 Wikipedia

Wikipedia Disclaimer: http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

1.2 Abstract

This document contains a description of the binary format of Microsoft Compound Document files.
Compound document files are used to structure the contents of a document in the file. It is possible to divide the data
into several streams, and to store these streams in different storages in the file. This way compound document files
support a complete file system inside the file, the streams are like files in a real file system, and the storages are like sub
directories.

3

http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer
http://www.openoffice.org/licenses/PDL.html
http://www.openoffice.org/licenses/PDL.html
http://www.openoffice.org/licenses/PDL.html

1 Introduction

1.3 Used Terms, Symbols, and Formatting

• References

A reference to another chapter is symbolised by a little arrow: ➜1.1.

• Examples

An example is indented and marked with a light-grey border.

This is an example.

• Numbers and Strings

Numerical values are shown in several number systems:
Number system Marking Example
Decimal None 1234
Hexadecimal Trailing “H” 1234H

Binary Trailing “2” 10012

Constant strings are enclosed in quotation marks. They may contain specific values (control characters, unprintable
characters). These values are enclosed in angle brackets.

Example of a string containing a control character: “abcdef<01H>ghij”.

• Content Listings

• The term “Not used” means: Ignore the data on import and write zero bytes on export. The same applies for unmen-
tioned bits in bit fields.

• The term “Unknown” describes data fields with fixed but unknown contents. On export these fields have to be written
as shown.

• At several places a variable is introduced, which represents the value of this field for later use, e.g. in formulas. An
example can be found in ➜4.1.

• Formulas

Important formulas are shown in a light-grey box.

4

2 Storages and Streams

2 Storages and Streams

Compound document files work similar to real file systems. They contain a number of independent data streams (like
files in a file system) which are organised in a hierarchy of storages (like sub directories in a file system).
Storages and streams are named. The names of all storages and streams that are direct members of a storage must be
different. Names of streams or storages that are members of different storages may be equal.
Each compound document file contains a root storage that is the direct or indirect parent of all other storages and
streams.

Example of a storage/stream hierarchy. The names of all direct members of a storage must be different, but it is
possible that two different storages contain a stream named “Stream1”.

Root Storage

Storage1 Stream1 Stream2 Storage2 Stream3 Stream4

Stream1 Stream21 Stream22 Stream23

5

3 Sectors and Sector Chains

3 Sectors and Sector Chains

3.1 Sectors and Sector Identifiers

All streams of a compound document file are divided into small blocks of data, called sectors. Sectors may contain
internal control data of the compound document or parts of the user data.
The entire file consists of a header structure (the compound document header, ➜4.1) and a list of all sectors following
the header. The size of the sectors can be set in the header and is fixed for all sectors then.

HEADER

SECTOR 0
SECTOR 1
SECTOR 2
SECTOR 3
SECTOR 4
SECTOR 5
SECTOR 6

⋮

Sectors are enumerated simply by their order in the file. The (zero-based) index of a sector is called sector identifier
(SecID). SecIDs are signed 32-bit integer values. If a SecID is not negative, it must refer to an existing sector. If a SecID
is negative, it has a special meaning. The following table shows all valid special SecIDs:

SecID Name Meaning
–1 Free SecID Free sector, may exist in the file, but is not part of any stream
–2 End Of Chain SecID Trailing SecID in a SecID chain (➜3.2)
–3 SAT SecID Sector is used by the sector allocation table (➜5.2)
–4 MSAT SecID Sector is used by the master sector allocation table (➜5.1)

6

3.2 Sector Chains and SecID Chains

3.2 Sector Chains and SecID Chains

The list of all sectors used to store the data of one stream is called sector chain. The sectors may appear unordered and
may be located on different positions in the file. Therefore an array of SecIDs, the SecID chain, specifies the order of all
sectors of a stream. A SecID chain is always terminated by a special End Of Chain SecID with the value –2 (➜3.1).

Example: A stream consists of 4 sectors. The SecID chain of the stream is [1, 6, 3, 5, –2]. See ➜4.3 on how to
calculate the file offset of a sector from its SecID.

HEADER

SECTOR 0
SECTOR 1
SECTOR 2
SECTOR 3
SECTOR 4
SECTOR 5
SECTOR 6

⋮

The SecID chain for each stream is built up from the sector allocation table (➜5.2), with exception of short-streams (➜6)
and the following two internal streams:
• the master sector allocation table (➜5.1), which builds its SecID chain from itself (each sector contains the SecID of

the following sector), and
• the sector allocation table itself, which builds its SecID chain from the master sector allocation table.

7

4 Compound Document Header

4 Compound Document Header

The compound document header (simply “header” in the following) contains all data needed to start reading a
compound document file.

4.1 Compound Document Header Contents

The header is always located at the beginning of the file, and its size is exactly 512 bytes. This implies that the first
sector (with SecID 0) always starts at file offset 512.
Contents of the compound document header structure:

Offset Size Contents
0 8 Compound document file identifier: D0H CFH 11H E0H A1H B1H 1AH E1H

8 16 Unique identifier (UID) of this file (not of interest in the following, may be all 0)
24 2 Revision number of the file format (most used is 003EH)
26 2 Version number of the file format (most used is 0003H)
28 2 Byte order identifier (➜4.2): FEH FFH = Little-Endian

FFH FEH = Big-Endian
30 2 Size of a sector in the compound document file (➜3.1) in power-of-two (ssz), real sector

size is sec_size = 2ssz bytes (minimum value is 7 which means 128 bytes, most used
value is 9 which means 512 bytes)

32 2 Size of a short-sector in the short-stream container stream (➜6.1) in power-of-two (sssz),
real short-sector size is short_sec_size = 2sssz bytes (maximum value is sector size
ssz, see above, most used value is 6 which means 64 bytes)

34 10 Not used
44 4 Total number of sectors used for the sector allocation table (➜5.2)
48 4 SecID of first sector of the directory stream (➜7)
52 4 Not used
56 4 Minimum size of a standard stream (in bytes, minimum allowed and most used size is 4096

bytes), streams with an actual size smaller than (and not equal to) this value are stored as
short-streams (➜6)

60 4 SecID of first sector of the short-sector allocation table (➜6.2), or –2 (End Of Chain
SecID, ➜3.1) if not extant

64 4 Total number of sectors used for the short-sector allocation table (➜6.2)
68 4 SecID of first sector of the master sector allocation table (➜5.1), or –2 (End Of Chain

SecID, ➜3.1) if no additional sectors used
72 4 Total number of sectors used for the master sector allocation table (➜5.1)
76 436 First part of the master sector allocation table (➜5.1) containing 109 SecIDs

8

4.2 Byte Order

4.2 Byte Order

All data items containing more than one byte may be stored using the Little-Endian or Big-Endian method1, but in real
world applications only the Little-Endian method is used. The Little-Endian method stores the least significant byte first
and the most significant byte last. This applies for all data types like 16-bit integers, 32-bit integers, and Unicode
characters.

Example: The 32-bit integer value 13579BDFH is converted into the Little-Endian byte sequence DFH 9BH 57H

13H, or to the Big-Endian byte sequence 13H 57H 9BH DFH.

4.3 Sector File Offsets

With the values from the header it is possible to calculate a file offset from a SecID:

sec_pos(SecID) = 512 + SecID ∙ sec_size = 512 + SecID ∙ 2 ssz

Example with ssz = 10 and SecID = 5:
sec_pos(SecID) = 512 + SecID ∙ 2 ssz = 512 + 5 ∙ 210 = 512 + 5 ∙ 1024 = 5632.

1 For more information see http://en.wikipedia.org/wiki/Endianness.

9

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

5 Sector Allocation

5 Sector Allocation

5.1 Master Sector Allocation Table

The master sector allocation table (MSAT) is an array of SecIDs of all sectors used by the sector allocation table (SAT,
➜5.2), which finally is needed to read any other stream in the file. The size of the MSAT (number of SecIDs) is equal to
the number of sectors used by the SAT. This value is stored in the header (➜4.1).
The first 109 SecIDs of the MSAT are contained in the header too. If the MSAT contains more than 109 SecIDs,
additional sectors are used to store the following SecIDs. The header contains the SecID of the first sector used for the
MSAT then (otherwise there is the special End Of Chain SecID with the value –2, ➜3.1).
The last SecID in each sector of the MSAT refers to the next sector used by the MSAT. If no more sectors follow, the
last SecID is the special End Of Chain SecID with the value –2 (➜3.1).
Contents of a sector of the MSAT (sec_size is the size of a sector in bytes, see ➜4.1):

Offset Size Contents
0 sec_size – 4 Array of (sec_size – 4) / 4 SecIDs of the MSAT

sec_size – 4 4 SecID of the next sector used for the MSAT, or –2 if this is the last sector

The last sector of the MSAT may not be used completely. Unused space is filled with the special Free SecID with the
value –1 (➜3.1). The MSAT is built up by concatenating all SecIDs from the header and the additional MSAT sectors.

Example: A compound document file contains a SAT that needs 300 sectors to be stored. The header specifies a
sector size of 512 bytes. This implies that a sector is able to store 128 SecIDs. The MSAT consists of 300
SecIDs (number of sectors used for the SAT). The first 109 SecIDs are stored in the header. The remaining 191
SecIDs of the MSAT need additional two sectors. In this example the first sector of the MSAT may be sector 1
which contains the next 127 SecIDs of the MSAT (the 128th SecID points to the next MSAT sector), and the
second sector of the MSAT may be sector 6 which contains the remaining 64 SecIDs.

HEADER SecID of first sector of the MSAT = 1

SECTOR 0
SECTOR 1 SecID of next sector of the MSAT (last SecID in this sector) = 6
SECTOR 2
SECTOR 3
SECTOR 4
SECTOR 5
SECTOR 6 SecID of next sector of the MSAT (last SecID in this sector) = –2

⋮

10

5.2 Sector Allocation Table

5.2 Sector Allocation Table

The sector allocation table (SAT) is an array of SecIDs. It contains the SecID chain (➜3.2) of all user streams (except
short-streams, ➜6) and of the remaining internal control streams (the short-stream container stream, ➜6.1, the short-
sector allocation table, ➜6.2, and the directory, ➜7). The size of the SAT (number of SecIDs) is equal to the number of
existing sectors in the compound document file.

5.2.1 Reading the Sector Allocation Table

The SAT is built by reading and concatenating the contents of all sectors given in the MSAT (➜5.1). The sectors have to
be read according to the order of the SecIDs in the MSAT.
Contents of a sector of the SAT (sec_size is the size of a sector in bytes, see ➜4.1):

Offset Size Contents
0 sec_size Array of sec_size/4 SecIDs of the SAT

5.2.2 Using the Sector Allocation Table

When building a SecID chain (➜3.2) for a specific stream, the current position (array index) in the SAT array refers to
the current sector, while the SecID contained at this position specifies the following sector in the sector chain.
The SAT may contain special Free SecIDs with the value –1 (➜3.1) at any position. These sectors are not used by a
stream. The position referring to the last sector of a stream contains the special End Of Chain SecID with the value –2.
Sectors used by the SAT itself are not chained, but are marked with the special SAT SecID with the value –3. Finally,
sectors used by the MSAT are marked with the special MSAT SecID with the value –4.
The entry point of a SecID chain has to be obtained somewhere else, e.g. from the directory entry (➜7.2) of a user
stream, or from the header (➜4.1) for internal control streams such as the short-sector allocation table (➜6.2), or the
directory stream itself (➜7.1).

Example: A compound document file contains one sector needed for the SAT (sector 1) and two streams.
Sector 1 contains the SecID array of the SAT shown below. The SAT contains the special SAT SecID (value –3)
at position 1 which marks this sector being part of the SAT.
One stream is the internal directory stream. In this example, the header may specify that it starts with sector 0.
The SAT contains the SecID 2 at position 0, the SecID 3 at position 2, and the SecID –2 at position 3. Therefore
the SecID chain of the directory stream is [0, 2, 3, –2], and the directory stream is stored in 3 sectors.
The directory contains (amongst others) the entry of a user stream that may start with sector 10. This results in
the SecID chain [10, 6, 7, 8, 9, –2] for this stream.

Array indexes 0 1 2 3 4 5 6 7 8 9 10 …

SAT contents (SecIDs) 2 –3 3 –2 –1 –1 7 8 9 –2 6 …

11

6 Short-Streams

6 Short-Streams

Whenever a stream is shorter than a specific length (specified in the header, ➜4.1), it is stored as a short-stream. Short-
streams do not directly use sectors to store their data, but are all embedded in a specific internal control stream, the
short-stream container stream.

6.1 Short-Stream Container Stream

The short-stream container stream is stored like any other (long) user stream: The first used sector has to be obtained
from the root storage entry in the directory (➜7.2), and its SecID chain (➜3.2) is contained in the SAT (➜5.2). The data
of all sectors used by the short-stream container stream are concatenated in order of its SecID chain. In the next step this
stream is virtually divided into short-sectors, similar to sectors in the main compound document file (➜3.1), but without
a header structure. Therefore the first short-sector (with SecID 0) is always located at offset 0 inside the short-stream
container stream. The size of the short-sectors is contained in the header (➜4.1). With this information it is possible to
calculate an offset in the short-stream container stream from a SecID:

short_sec_pos(SecID) = SecID ∙ short_sec_size = SecID ∙ 2 sssz

Example with sssz = 6 and SecID = 5:
short_sec_pos(SecID) = SecID ∙ 2 sssz = 5 ∙ 26 = 5 ∙ 64 = 320.

6.2 Short-Sector Allocation Table

The short-sector allocation table (SSAT) is an array of SecIDs and contains the SecID chains (➜3.2) of all short-
streams, similar to the sector allocation table (➜5.2) that contains the SecID chains of standard streams.
The first SecID of the SSAT is contained in the header (➜4.1), the remaining SecID chain is contained in the SAT. The
SSAT is built by reading and concatenating the contents of all sectors.
Contents of a sector of the SSAT (sec_size is the size of a sector in bytes, see ➜4.1):

Offset Size Contents
0 sec_size Array of sec_size/4 SecIDs of the SSAT

The SSAT will be used similarly to the SAT (➜5.2) with the difference that the SecID chains refer to short-sectors in the
short-stream container stream (➜6.1).

12

7 Directory

7 Directory

7.1 Directory Structure

The directory is an internal control stream that consists of an array of directory entries (➜7.2). Each directory entry
refers to a storage or a stream in the compound document file (➜2). Directory entries are enumerated in order of their
appearance in the stream. The zero-based index of a directory entry is called directory entry identifier (DirID).

DIRECTORY ENTRY 0
DIRECTORY ENTRY 1
DIRECTORY ENTRY 2
DIRECTORY ENTRY 3

⋮

The position of a directory entry will not change as long as the referred storage or stream exists in the compound
document. This implies that the DirID of a storage or stream never changes regardless how many other objects are
inserted to or removed from the compound document. If a storage or stream is removed, the corresponding directory entry
is marked as empty. There is a special directory entry at the beginning of the directory (with the DirID 0). It represents
the root storage and is called root storage entry.
The directory organises direct members (storages and streams) of each storage in a separate red-black tree2. Shortly,
nodes in a red-black tree have to fulfil all of the following conditions:
• The root node is black.
• The parent of a red node is black.
• The paths from the root node to all leaves contain the same number of black nodes.
• The left child of a node is less than the node, the right child is greater.
But note that not all implementations follow these rules. The safest way to read directory entries is to ignore the node
colours and to rebuild the red-black tree from scratch.

Example: Taking the example from ➜2, the directory would have the following structure:
• The root storage is represented by the root storage entry. It does not have a parent directory entry, therefore

there are no other entries that can be organised in a red-black tree.
• All members of the root storage (“Storage1”, “Storage2”, “Stream1”, “Stream2”, “Stream3”, and “Stream4”)

are inserted into a red-black tree. The DirID of the root node of this tree is stored in the root storage entry.
• The storage “Storage1” contains one member “Stream1” which is inserted into a separate red-black tree. The

directory entry of “Storage1” contains the DirID of “Stream1”.
• The storage “Storage2” contains three members “Stream21”, “Stream22”, and “Stream23”. These directory

entries are organised in a separate red-black tree. The directory entry of “Storage2” contains the DirID of the
root node of this tree.

2 See http://en.wikipedia.org/wiki/Red_black_tree.

13

http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree

7 Directory

This results in the fact that each directory entry contains up to three DirIDs: The first is the DirID of the left child of the
red-black tree containing this entry, the second is the DirID of the right child in the tree, and (if this entry is a storage)
the third is the DirID of the root node of another red-black tree containing all sub streams and sub storages.
Nodes are compared by name to decide whether they become the left or right child of another node:
• A node is less than another node, if the name is shorter; and greater, if the name is longer.
• If both names have the same length, they are compared character by character (case insensitive).

Examples: The name “VWXYZ” is less than the name “ABCDEFG” because the length of the former name is
shorter (regardless of the fact that the character V is greater than the character A). The name “ABCDE” is less
than the name “ABCFG” because the lengths of both names are equal, and comparing the names shows that the
fourth character of the former name is less then the fourth character of the latter name.

14

7.2 Directory Entries

7.2 Directory Entries

7.2.1 Directory Entry Structure

The size of each directory entry is exactly 128 bytes. The formula to calculate an offset in the directory stream from a
DirID is as follows:

dir_entry_pos(DirID) = DirID ∙ 128

Contents of the directory entry structure:
Offset Size Contents

0 64 Character array of the name of the entry, always 16-bit Unicode characters, with trailing
zero character (results in a maximum name length of 31 characters)

64 2 Size of the used area of the character buffer of the name (not character count), including
the trailing zero character (e.g. 12 for a name with 5 characters: (5+1)∙2 = 12)

66 1 Type of the entry: 00H = Empty 03H = LockBytes (unknown)
01H = User storage 04H = Property (unknown)
02H = User stream 05H = Root storage

67 1 Node colour of the entry: 00H = Red 01H = Black
68 4 DirID of the left child node inside the red-black tree of all direct members of the parent

storage (if this entry is a user storage or stream, ➜7.1), –1 if there is no left child
72 4 DirID of the right child node inside the red-black tree of all direct members of the parent

storage (if this entry is a user storage or stream, ➜7.1), –1 if there is no right child
76 4 DirID of the root node entry of the red-black tree of all storage members (if this entry is a

storage, ➜7.1), –1 otherwise
80 16 Unique identifier, if this is a storage (not of interest in the following, may be all 0)
96 4 User flags (not of interest in the following, may be all 0)
100 8 Time stamp of creation of this entry (➜7.2.3). Most implementations do not write a valid

time stamp, but fill up this space with zero bytes.
108 8 Time stamp of last modification of this entry (➜7.2.3). Most implementations do not write

a valid time stamp, but fill up this space with zero bytes.
116 4 SecID of first sector or short-sector, if this entry refers to a stream (➜7.2.2), SecID of first

sector of the short-stream container stream (➜6.1), if this is the root storage entry, 0
otherwise

120 4 Total stream size in bytes, if this entry refers to a stream (➜7.2.2), total size of the short-
stream container stream (➜6.1), if this is the root storage entry, 0 otherwise

124 4 Not used

7.2.2 Starting Position of a Stream

The directory entry of a stream contains the SecID of the first sector or short-sector containing the stream data. All
streams that are shorter than a specific size given in the header (➜4.1) are stored as a short-stream, thus inserted into the
short-stream container stream (➜6.1). In this case the SecID specifies the first short-sector inside the short-stream
container stream, and the short-sector allocation table (➜6.2) is used to build up the SecID chain (➜3.2) of the stream.

15

7 Directory

7.2.3 Time Stamp

The time stamp field is an unsigned 64-bit integer value that contains the time elapsed since 1601-Jan-01 00:00:00
(Gregorian calendar3). One unit of this value is equal to 100 nanoseconds (10–7 seconds). That means, each second the
time stamp value will be increased by 10 million units.
When calculating the date from a time stamp, the correct rules of leap year handling have to be respected4:
• a year divisible by 4 is a leap year;
• with the exception that a year divisible by 100 is not a leap year (e.g. 1900 was no leap year);
• with the exception that a year divisible by 400 is a leap year (e.g. 2000 was a leap year).

Example: The time stamp value is 01A5E403C2D59C00H.
Calculation step Formula Result
Conversion to decimal t0 = 118,751,670,000,000,000
Fractional amount of a second rfrac = t0 modulo 10,000,000 rfrac = 0
Remaining entire seconds t1 = t0 / 10,000,000 t1 = 11,875,167,000
Seconds in a minute rsec = t1 modulo 60 rsec = 0
Remaining entire minutes t2 = t1 / 60 t2 = 197,919,450
Minutes in an hour rmin = t2 modulo 60 rmin = 30
Remaining entire hours t3 = t2 / 60 t3 = 3,298,657
Hours in a day rhour = t3 modulo 24 rhour = 1
Remaining entire days t4 = t3 / 24 t4 = 137,444
Entire years from 1601-Jan-015 ryear = 1601 + number of full years in t4 ryear = 1601 + 376 = 1977
Remaining days in year 1977 t5 = t4 – (number of days from

1601-Jan-01 to 1977-Jan-01)
t5 = 137,444 – 137,331 = 113

Entire months from 1977-Jan-01 rmonth = 1 + number of full months in t5 rmonth = 1 + 3 = 4 = April
Remaining days in month April t6 = t5 – (number of days from

1977-Jan-01 to 1977-Apr-01)
t6 = 113 – 90 = 23

Resulting day of month April rday = 1 + t6 rday = 1 + 23 = 24
The final result is 1977-Apr-24 01:30:00. Guess what it is…

3 See http://en.wikipedia.org/wiki/Gregorian_calendar.
4 See http://en.wikipedia.org/wiki/Leap_year for some background information.
5 You may use your favourite date/time manipulation library to perform the following steps.

16

http://en.wikipedia.org/wiki/Leap_year
http://en.wikipedia.org/wiki/Leap_year
http://en.wikipedia.org/wiki/Leap_year
http://en.wikipedia.org/wiki/Gregorian_calendar
http://en.wikipedia.org/wiki/Gregorian_calendar
http://en.wikipedia.org/wiki/Gregorian_calendar

8 Example

8 Example

This chapter shows a possible way to open a compound document file. The file that is processed here is a simple spread-
sheet document in Microsoft Excel file format, written by OpenOffice.org Calc.

8.1 Compound Document Header

The first step is to read the compound document header (➜4.1). The first 512 bytes of the file may look like this:

00000000H D0 CF 11 E0 A1 B1 1A E1 00 00 00 00 00 00 00 00
00000010H 00 00 00 00 00 00 00 00 3B 00 03 00 FE FF 09 00
00000020H 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
00000030H 0A 00 00 00 00 00 00 00 00 10 00 00 02 00 00 00
00000040H 01 00 00 00 FE FF FF FF 00 00 00 00 00 00 00 00
00000050H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000060H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000070H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000080H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000090H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000A0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000B0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000C0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000D0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000100H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000110H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000120H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000130H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000140H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000150H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000160H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000170H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000180H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000190H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001A0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001B0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001C0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001D0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000001F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

17

8 Example

1) 8 bytes containing the fixed compound document file identifier:

00000000H D0 CF 11 E0 A1 B1 1A E1 00 00 00 00 00 00 00 00

2) 16 bytes containing a unique identifier, followed by 4 bytes containing a revision number and a version number.
These values can be skipped:

00000000H D0 CF 11 E0 A1 B1 1A E1 00 00 00 00 00 00 00 00
00000010H 00 00 00 00 00 00 00 00 3B 00 03 00 FE FF 09 00

3) 2 bytes containing the byte order identifier. It should always consist of the byte sequence FEH FFH:

00000010H 00 00 00 00 00 00 00 00 3B 00 03 00 FE FF 09 00

4) 2 bytes containing the size of sectors, 2 bytes containing the size of short-sectors. The sector size is 512 bytes, and
the short-sector size is 64 bytes here:

00000010H 00 00 00 00 00 00 00 00 3B 00 03 00 FE FF 09 00
00000020H 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

5) 10 bytes without valid data, can be ignored:

00000020H 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

6) 4 bytes containing the number of sectors used by the sector allocation table (➜5.2). The SAT uses only one sector
here:

00000020H 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

7) 4 bytes containing the SecID of the first sector used by the directory (➜7). The directory starts at sector 10 here:

00000030H 0A 00 00 00 00 00 00 00 00 10 00 00 02 00 00 00

8) 4 bytes without valid data, can be ignored:

00000030H 0A 00 00 00 00 00 00 00 00 10 00 00 02 00 00 00

9) 4 bytes containing the minimum size of standard streams. This size is 00001000H = 4096 bytes here:

00000030H 0A 00 00 00 00 00 00 00 00 10 00 00 02 00 00 00

10) 4 bytes containing the SecID of the first sector of the short-sector allocation table (➜6.2), followed by 4 bytes
containing the number of sectors used by the SSAT. In this example the SSAT starts at sector 2 and uses one
sector:

00000030H 0A 00 00 00 00 00 00 00 00 10 00 00 02 00 00 00
00000040H 01 00 00 00 FE FF FF FF 00 00 00 00 00 00 00 00

11) 4 bytes containing the SecID of the first sector of the master sector allocation table (➜5.1), followed by 4 bytes
containing the number of sectors used by the MSAT. The SecID here is –2 (End Of Chain SecID, ➜3.1) which
states that there is no extended MSAT in this file:

00000040H 01 00 00 00 FE FF FF FF 00 00 00 00 00 00 00 00

12) 436 bytes containing the first 109 SecIDs of the MSAT. Only the first SecID is valid, because the SAT uses only
one sector (see above). Therefore all remaining SecIDs are set to the special Free SecID with the value –1 (➜3.1).
The only sector used by the SAT is sector 0:

00000040H 01 00 00 00 FE FF FF FF 00 00 00 00 00 00 00 00
00000050H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000060H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

⋮ ⋮

18

8.2 Master Sector Allocation Table

8.2 Master Sector Allocation Table

The header contains the entire MSAT (➜5.1), therefore nothing else can be done here. The MSAT consists of the SecID
chain [0, –2].

8.3 Sector Allocation Table

To build the SAT (➜5.2), all sectors specified in the MSAT have to be read. In this example this is only sector 0. It starts
at file offset 00000200H = 512 (➜4.3) and may look like this:

00000200H FD FF FF FF FF FF FF FF FE FF FF FF 04 00 00 00
00000210H 05 00 00 00 06 00 00 00 07 00 00 00 08 00 00 00
00000220H 09 00 00 00 FE FF FF FF 0B 00 00 00 FE FF FF FF
00000230H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000240H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000250H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000260H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000270H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000280H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000290H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002A0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002B0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002C0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002D0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000002F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000300H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000310H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000320H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000330H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000340H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000350H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000360H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000370H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000380H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000390H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003A0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003B0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003C0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003D0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000003F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This results in the following SecID array for the SAT:

Array
indexes 0 1 2 3 4 5 6 7 8 9 10 11 12 …

SecID array –3 –1 –2 4 5 6 7 8 9 –2 11 –2 –1 …

As expected, sector 0 is marked with the special SAT SecID (➜3.1). Sector 1 and all sectors starting with sector 12 are
not used (special Free SecID with value –1).

19

8 Example

8.4 Short-Sector Allocation Table

The SSAT (➜6.2) starts at sector 2 and consists only of this one sector as specified in the header. This is in line with the
SAT that contains the End Of Chain SecID at position 2. The SecID chain of the SSAT is therefore [2, –2]. Sector 2
starts at file offset 00000600H = 1536 (➜4.3) and may look like this:

00000600H 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00
00000610H 05 00 00 00 06 00 00 00 07 00 00 00 08 00 00 00
00000620H 09 00 00 00 0A 00 00 00 0B 00 00 00 0C 00 00 00
00000630H 0D 00 00 00 0E 00 00 00 0F 00 00 00 10 00 00 00
00000640H 11 00 00 00 12 00 00 00 13 00 00 00 14 00 00 00
00000650H 15 00 00 00 16 00 00 00 17 00 00 00 18 00 00 00
00000660H 19 00 00 00 1A 00 00 00 1B 00 00 00 1C 00 00 00
00000670H 1D 00 00 00 1E 00 00 00 1F 00 00 00 20 00 00 00
00000680H 21 00 00 00 22 00 00 00 23 00 00 00 24 00 00 00
00000690H 25 00 00 00 26 00 00 00 27 00 00 00 28 00 00 00
000006A0H 29 00 00 00 2A 00 00 00 2B 00 00 00 2C 00 00 00
000006B0H 2D 00 00 00 FE FF FF FF 2F 00 00 00 FE FF FF FF
000006C0H FE FF FF FF 32 00 00 00 33 00 00 00 34 00 00 00
000006D0H 35 00 00 00 FE FF FF FF FF FF FF FF FF FF FF FF
000006E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000006F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000700H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000710H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000720H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000730H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000740H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000750H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000760H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000770H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000780H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000790H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007A0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007B0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007C0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007D0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007E0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000007F0H FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This results in the following SecID array for the SSAT:

Array
indexes 0 1 2 3 4 5 6 7 8 9 10 11 … 41 42 43 44 45 46 47 48 49 50 51 52 53 54 …

SecID array 1 2 3 4 5 6 7 8 9 10 11 12 … 42 43 44 45 –2 47 –2 –2 50 51 52 53 –2 –1 …

All short-sectors starting with sector 54 are not used (special Free SecID with value –1).

20

8.5 Directory

8.5 Directory

The header contains the SecID of the first sector that contains the directory (➜7), which is sector 10 in this example. The
directory is always contained in standard sectors, never in short-sectors. Therefore the SAT is used to build up the SecID
chain of the directory: [10, 11, –2]. Sector 10 starts at file offset 00001600H = 5632, and sector 11 starts at file offset
00001800H = 6144 (➜4.3). In this example, a sector has a size of 512 bytes, therefore each sector contains 4 directory
entries (each entry uses exactly 128 bytes), and the entire directory contains 8 entries.
The following example shows what is contained in the first two directory entries (➜7.2). The other entries are read
accordingly.

8.5.1 Root Storage Entry

The first directory entry always represents the root storage entry. It may look like this:

00001600H 52 00 6F 00 6F 00 74 00 20 00 45 00 6E 00 74 00
00001610H 72 00 79 00 00 00 00 00 00 00 00 00 00 00 00 00
00001620H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001630H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00
00001650H 10 08 02 00 00 00 00 00 C0 00 00 00 00 00 00 46
00001660H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001670H 00 00 00 00 03 00 00 00 80 0D 00 00 00 00 00 00

1) 64 bytes containing the character array of the entry name (16-bit characters, terminated by the first <00H>
character). The name of this entry is “Root Entry” here:

00001600H 52 00 6F 00 6F 00 74 00 20 00 45 00 6E 00 74 00
00001610H 72 00 79 00 00 00 00 00 00 00 00 00 00 00 00 00
00001620H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001630H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2) 2 bytes containing the valid range of the previous character array (22 bytes here, resulting in 10 valid characters):

00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00

3) 1 byte containing the type of the entry. Must be 05H for the root storage entry.

00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00

4) 1 byte containing the node colour of the entry. It is red in this example, breaking the rule that the root storage entry
should always be black:

00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00

5) 4 bytes containing the DirID of the left child node, followed by 4 bytes containing the DirID of the right child
node. Should both be –1 in the root storage entry:

00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00

6) 4 bytes containing the DirID of the root node entry of the red-black tree of all members of the root storage. It is 1 in
this example:

00001640H 16 00 05 00 FF FF FF FF FF FF FF FF 01 00 00 00

21

8 Example

7) 16 bytes containing a unique identifier, followed by 4 bytes containing additional flags, and two time stamps,
8 bytes each, containing the creation time and last modification time of the storage (➜7.2.3). This data can be
skipped:

00001650H 10 08 02 00 00 00 00 00 C0 00 00 00 00 00 00 46
00001660H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001670H 00 00 00 00 03 00 00 00 80 0D 00 00 00 00 00 00

8) 4 bytes containing the SecID of the first sector or short-sector of a stream, followed by 4 bytes containing the
stream size. In case of the root storage entry, this is the SecID of the first sector and the size of the short-stream
container stream (➜6.1). It starts at sector 3 and has a size of 00000D80H = 3456 bytes in this example:

00001670H 00 00 00 00 03 00 00 00 80 0D 00 00 00 00 00 00

9) 4 bytes without valid data, can be skipped:

00001670H 00 00 00 00 03 00 00 00 80 0D 00 00 00 00 00 00

8.5.2 Second Directory Entry

The second directory entry (with DirID 1) may look like this:

00001680H 57 00 6F 00 72 00 6B 00 62 00 6F 00 6F 00 6B 00
00001690H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016A0H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016B0H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016C0H 12 00 02 00 02 00 00 00 04 00 00 00 FF FF FF FF
000016D0H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016E0H 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016F0H 00 00 00 00 00 00 00 00 51 0B 00 00 00 00 00 00

Important data is highlighted. The name of this entry is “Workbook”, it represents a stream, the DirID of the left child
node is 2, the DirID of the right child node is 4, the SecID of the first sector is 0, and the stream size is
00000B51H = 2897 bytes. The stream is shorter than 4096 bytes, therefore it is stored in the short-stream container
stream.

8.5.3 Remaining Directory Entries

The remaining directory entries are read similar to the examples above, resulting in the following directory:
DirID Name Type DirID of

left child
DirID of

right child
DirID of

first
member

SecID of
first sector

Stream
size

Allocation
table

0 Root Entry root none none 1 3 3456 SAT
1 Workbook stream 2 4 none 0 2897 SSAT
2 <01H>CompObj stream 3 none none 46 73 SSAT
3 <01H>Ole stream none none none 48 20 SSAT
4 <05H>SummaryInformation stream none none none 49 312 SSAT
5 empty
6 empty
7 empty

22

8.5 Directory

Starting with the first member directory entry specified in the root storage entry (here: DirID 1) it is possible to find all
members of the root storage. Entry 1 has two child nodes with DirID 2 and DirID 4. DirID 2 has one child node with
DirID 3. The child nodes with the DirIDs 3 and 4 do not specify more child nodes. Therefore the directory entries with
the DirIDs 1, 2, 3, and 4 represent members of the root storage.

8.5.4 SecID Chains of the Streams

The short-stream container stream (➜6.1) is always stored in standard sectors. All user streams are shorter than 4096
bytes (the minimum size of standard streams specified in the header, ➜4.1), therefore they are stored in the short-stream
container stream, and the SSAT is used to build the SecID chains of the streams.
DirID Stream name Allocation table SecID chain

0 Short-stream container stream6 SAT [3, 4, 5, 6, 7, 8, 9, –2]
1 Workbook SSAT [0, 1, 2, 3, 4, 5, …, 43, 44, 45, –2]
2 <01H>CompObj SSAT [46, 47, –2]
3 <01H>Ole SSAT [48, –2]
4 <05H>SummaryInformation SSAT [49, 50, 51, 52, 53, –2]

8.5.5 Short-Stream Container Stream

The short-stream container stream is read by concatenating all sectors specified in the SecID chain of the root storage
entry in the directory. In this example, the sectors 3, 4, 5, 6, 7, 8, and 9 have to be read in this order, resulting in a stream
with a size of 3584 bytes, but only the first 3456 bytes are used (as specified in the root storage entry). These 3456 bytes
are divided into short-sectors with a size of 64 bytes each, resulting in 54 short-sectors.

8.5.6 Reading a Stream

Now the stream “<01H>CompObj” may be read. The SecID chain of this stream is [46, 47, –2], the stream is a short-
stream. The two short-sectors 46 and 47 contain the user data. Short-sector 46 starts at offset 2944 in the short-stream
container stream, short-sector 47 starts at offset 3008 (➜6.1).

6 The actual name of this directory entry may be “Root Entry” or similar, but it refers to the short-stream container stream too.

23

9 Glossary

9 Glossary

Term Description Chapter
Byte order The order in which single bytes of a bigger data type are represented

or stored.
➜4.2

Compound document File format used to store several objects in a single file, objects can
be organised hierarchically in storages and streams.

➜1.2

Compound document header Structure in a compound document containing initial settings. ➜4.1
Control stream Stream in a compound document containing internal control data. ➜5, ➜6, ➜7
Directory List of directory entries for all storages and streams in a compound

document.
➜7.1

Directory entry Part of the directory containing relevant data for a storage or a
stream.

➜7.2

Directory entry identifier (DirID) Zero-based index of a directory entry. ➜7.1
Directory stream Sector chain containing the directory. ➜7.1
DirID Zero-based index of a directory entry (short for “directory entry

identifier”).
➜7.1

End Of Chain SecID Special sector identifier used to indicate the end of a SecID chain. ➜3.1
File offset Physical position in a file. ➜4.3
Free SecID Special sector identifier for unused sectors. ➜3.1
Header Short for “compound document header”. ➜4.1
Master sector allocation table
(MSAT)

SecID chain containing sector identifiers of all sectors used by the
sector allocation table.

➜5.1

MSAT Short for “master sector allocation table”. ➜5.1
MSAT SecID Special sector identifier used to indicate that a sector is part of the

master sector allocation table.
➜3.1

Red-black tree Tree structure used to organise direct members of a storage. ➜7.1
Root storage Built-in storage that contains all other objects (storages and

streams) in a compound document.
➜2

Root storage entry Directory entry representing the root storage. ➜7.1
SAT Short for “sector allocation table”. ➜5.2
SAT SecID Special sector identifier used to indicate that a sector is part of the

sector allocation table.
➜3.1

SecID Zero-based index of a sector (short for “sector identifier”). ➜3.1
SecID chain An array of sector identifiers (SecIDs) specifying the sectors that are

part of a sector chain and thus enumerates all sectors used by a
stream.

➜3.2

Sector Part of a compound document with fixed size that contains any kind
of stream (user stream or control stream) data.

➜3.1

24

9 Glossary

Term Description Chapter
Sector allocation table (SAT) Array of sector identifiers containing the SecID chains of all user

streams and a few internal control streams.
➜5.2

Sector chain An array of sectors that forms a stream as a whole. ➜3.2
Sector identifier (SecID) Zero-based index of a sector. ➜3.1
Short-sector Part of the short-stream container stream with fixed size that

contains one part of a short-stream.
➜6.1

Short-sector allocation table
(SSAT)

Array of sector identifiers containing the SecID chains of all short-
streams.

➜6.2

Short-stream A user stream shorter than a specific size. ➜6
Short-stream container stream An internal stream that contains all short-streams. ➜6.1
SSAT Short for “short-sector allocation table”. ➜6.2
Storage Part of a compound document used to separate streams into different

groups, similar to directories in a file system.
➜2

Stream Part of a compound document containing user data or internal
control data, similar to files in a file system.

➜2

Stream offset Virtual position in a stream. ➜6.1, ➜7.2
Time stamp Value specifying date and time. ➜7.2.3
User stream Stream in a compound document containing user data. ➜2

25

	1Introduction
	1.1License Notices
	1.1.1Public Documentation License Notice
	1.1.2Wikipedia

	1.2Abstract
	1.3Used Terms, Symbols, and Formatting

	2Storages and Streams
	3Sectors and Sector Chains
	3.1Sectors and Sector Identifiers
	3.2Sector Chains and SecID Chains

	4Compound Document Header
	4.1Compound Document Header Contents
	4.2Byte Order
	4.3Sector File Offsets

	5Sector Allocation
	5.1Master Sector Allocation Table
	5.2Sector Allocation Table
	5.2.1Reading the Sector Allocation Table
	5.2.2Using the Sector Allocation Table

	6Short-Streams
	6.1Short-Stream Container Stream
	6.2Short-Sector Allocation Table

	7Directory
	7.1Directory Structure
	7.2Directory Entries
	7.2.1Directory Entry Structure
	7.2.2Starting Position of a Stream
	7.2.3Time Stamp

	8Example
	8.1Compound Document Header
	8.2Master Sector Allocation Table
	8.3Sector Allocation Table
	8.4Short-Sector Allocation Table
	8.5Directory
	8.5.1Root Storage Entry
	8.5.2Second Directory Entry
	8.5.3Remaining Directory Entries
	8.5.4SecID Chains of the Streams
	8.5.5Short-Stream Container Stream
	8.5.6Reading a Stream

	9Glossary

