
StarOffice Programmer’s Tutorial

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-5845
May 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

1. Introduction 7

1.1 What this book is about 7

1.2 Who should read this book 8

1.3 What is StarOffice API 9

1.4 How you can use StarOffice API 9

1.5 Where to find additional information 10

1.6 Typographic conventions 10

2. StarOffice API - Concepts 13

2.1 Services and Interfaces 13

2.2 Modules 15

2.3 Components 16

3. Using StarOffice API - Basics 17

3.1 Getting a Service 17

3.1.1 Independent Services 17

3.1.2 Context-dependent services 18

3.1.3 Service Factories 20

3.1.4 Which services does StarOffice API provide 20

3.2 Properties 21

3.3 Collections and Containers 22

3

3.3.1 Named access 22

3.3.2 Index access 23

3.3.3 Enumeration access 24

3.4 Events 25

3.5 Understanding the StarOffice API Reference Manual 25

3.5.1 Properties 25

3.5.2 Types 26

3.5.3 Constants 28

3.5.4 URLs 28

4. Using StarOffice API - Building blocks 31

4.1 Styles 31

4.1.1 Style basics 32

4.1.2 Finding a suitable style 34

4.1.3 Defining your own style 34

4.1.4 Hard formatting 35

4.1.5 Headers, footers and tab stops 37

4.2 Importing, Exporting and Printing 41

4.2.1 Importing other Formats 41

4.2.2 Saving and exporting documents 43

4.2.3 Printing 44

4.3 Text 46

4.3.1 The structure of text documents 47

4.3.2 Moving around 51

4.3.3 Inserting and Changing text 52

4.3.4 Inserting paragraph breaks, special characters, and page
breaks 53

4.3.5 Searching and replacing 55

4.3.6 Using regular expressions 57

4 StarOffice Programmer’s Tutorial ♦ May 2000

4.3.7 Inserting tables, frames, etc. 58

4.3.8 Locating text content 63

4.4 Sheet 64

4.4.1 Using Cells and Ranges 64

4.4.2 Formatting cells 70

4.4.3 Drawing a Chart from Data 74

4.5 Drawing 84

4.5.1 Creating simple shapes 87

4.5.2 Making things easier 90

4.5.3 Grouping objects 90

4.5.4 Creating sophisticated shapes 92

4.5.5 Manipulating shapes 95

5. Code Complete 99

5.1 Text 99

5.1.1 Modifying text automatically 99

5.1.2 Creating an index 103

5.2 Sheet 105

5.2.1 Adapting to Euroland 105

5.3 Drawing 107

5.3.1 Import/Export of ASCII files 107

5.4 Stock quotes updater 116

5.4.1 Retrieving URLs 117

5.4.2 Updating the tables 118

5.4.3 Updating the chart 119

5.5 Troubleshooting 121

5.5.1 Debugging 121

5.5.2 Displaying the object details 122

A. The UML Class Diagrams 125

Contents 5

A.1 UML 125

A.2 Stereotypes used by StarOffice API 125

A.3 Interface 126

A.4 Service 127

A.5 Relations used in the Class Diagrams 127

Glossary 131

6 StarOffice Programmer’s Tutorial ♦ May 2000

CHAPTER 1

Introduction

We wish to acknowledge Christian Kirsch as the author of this tutorial..

1.1 What this book is about
This tutorial provides you with some recipes that should help you to program
StarOffice. Although this software suite offers most of the features required in
today’s offices, there are always tasks that are better handled with a small program.
Most notably, a task requiring the same mouse clicks or text entries over and over
again should be done by a program.

StarOffice API permits you to automate tasks that would be tedious or hard to
perform within StarOffice. For example, you can change many documents in one
step or send email to a group of recipients selected from a database automatically.
Furthermore, you can use StarOffice API to integrate StarOffice components into
your own programs. The details of this integration are beyond the scope of this book,
however.

After you have read this book, you should have a fairly good knowledge of all
StarOffice API components. However, we can’t provide you with detailed
information for all services and interfaces. But you’ll learn how to use the StarOffice
API Reference Manual, available as part of the StarOffice SDK, to find all the details
you are interested in.

The StarOffice Programmer’s Tutorial consists of several parts that should be read in
sequence, since each chapter builds on the previous ones.

� This introduction contains general information on the whole book.

� Chapter 2 presents the parts that make up StarOffice API.

� In Chapter 3, you’ll see the basic techniques used in StarOffice API.

7

� Chapter 4 contains examples of building blocks. These short programs can be used
stand-alone or as parts of bigger applications.

� Finally, Chapter 5 features several larger programs that show you how to put the
building blocks together.

We chose the name "StarOffice Programmer’s Tutorial" to emphasize that this is
neither a reference nor a user’s manual. Because we are focusing on examples that
illustrate important aspects and usages of StarOffice API, this is not a complete
description of all StarOffice API features. After you have read this book and worked
through the examples you should understand the structure of StarOffice API and be
able to write your own programs using the StarOffice API Reference Manual. Most
printed sample code is stripped of comments, introductory and finalizing statements
(like variable declarations and return statements).

You can find all the examples in the package accompanying this Programmer’s
Tutorial. If a certain example is too large, we’ll only show the more interesting parts
of the programs in print. All examples will explore only those StarOffice API features
provided by StarOffice. Put in other words: The StarOffice Programmer’s Tutorial
does not contain any guidance that permit you to extend StarOffice API with your
own services.

If you download this document from http://soldc.sun.com/staroffice you will also
be able to download the examples.

If you have any suggestions on improving this document send them to
StarOfficeAPItutorialfeedback@eng.sun.com.

1.2 Who should read this book
If you want to program StarOffice or if your boss wants you to do that, this book is
for you. You should already have some programming experience, since we will not
explain what a variable is, what "string" stands for or how to pass parameters to a
function. Telling you all that would have blown up this book to at least twice its
current size.

There are some situations when programming StarOffice is advantageous:

� You want to customize its behavior. In a big organization, it might be required that
certain users work with customized menus or that they find themselves in a
particular application whenever they start StarOffice.

� Suppose you wanted to change the tab settings for all but one paragraph style -
doing this with dialogs is tedious, but it’s a simple job for a small program.

� If you are using StarPortal, you can use StarOffice API to access its components
(aka StarOffice Beans) and incorporate them in your application.

8 StarOffice Programmer’s Tutorial ♦ May 2000

You do not have to know a particular programming language to understand
StarOffice API. Some basic knowledge of object oriented paradigms and component
technology might be advantageous but it is not strictly required.

If you are using StarOffice only for the occasional letter every other month, you have
no need for StarOffice API. Similarly, if you have never written a single line of code,
not even goto()-ridden Basic, this book is not for you.

Even if you are not planning to develop software, you might be interested to read the
first three chapters of this book to get an idea of StarOffice API. Just go on reading
than, but be aware that the fourth and fifth chapter might seem too technical to you.

1.3 What is StarOffice API
StarOffice API is the "office component model" on which StarOffice is based. This is
certainly a nice enough term, but what does it mean? First of all, StarOffice API is
not a programming language. It is an abstract definition of all the objects and their
interfaces that you can use in your programs.

The crucial term here is "abstract definition": StarOffice API does not implement
objects, interfaces etc. itself. This implementation is provided by StarOffice, but you
could as well write your own code to implement part or all of StarOffice API. You
can’t start writing your own implementation of StarOffice API right now, bu it will
be feasible in the future. However, as mentioned before, this book will not explain
you how to do that.

Although StarOffice implements StarOffice API, not all parts of the office suite are
accessible from StarOffice API. For example, you can access controls in a document
from StarOffice API, but you can’t build dialogs with StarOffice API. Eventually, all
aspects of StarOffice will be integrated with StarOffice API.

Since StarOffice API provides only concepts, it can be used from different
programming languages. Currently, it provides access for StarBasic, StarScript (aka
ECMAScript), Java, and C++. Interfaces for other languages can be build, but this is
not a topic of the tutorial.

1.4 How you can use StarOffice API
As said before, StarOffice API is no programming language. It only provides
interfaces and services that you use in your program. You can employ several
languages in which you write StarOffice API programs. This tutorial will show you

Introduction 9

how to use StarBasic, but you can use StarScript (aka ECMAScript), C(++) or Java as
well.

Although in this tutorial we will focus on the usage of StarBasic, you will be able to
use the examples as patterns for developing StarOffice API Java applications as well.
This language is particularly important because it permits you to access and provide
JavaBeans. These are components used by the StarPortal. With Java, you could thus
integrate a StarOffice Writer Bean in your own applet.

StarBasic is similar to other dialects of BASIC, for example the one used by Microsoft
in their office products. It provides some object orientation and most simple data
types like real and integer number, booleans, strings and arrays. StarBasic offers
some shortcuts for StarOffice API so that it might be easier to use than other
programming languages.

1.5 Where to find additional information
The primary source of StarOffice API information is the StarOffice API Reference
Manual. This manual provides all details on StarOffice API services, interfaces and
objects. Most of it is generated automatically from the StarOffice API source files and
is thus complete, accurate and up to date. However, it is not targeted towards any
particular programming language. You should read Section 3.5 “Understanding the
StarOffice API Reference Manual” on page 25 for StarBasic specific information

The website of Sun Microsystems http://www.sun.com/staroffice/ and the
newsgroups hosted by Sun (news://starnews.sun.com) provide additional help
and information. You should check them regularly for up-to-date information.

1.6 Typographic conventions
We’ll use different fonts for different items in this book.

� Method and function names()

� Datatypes, variables, and property names

� Literal text

� File names

� Programming examples

10 StarOffice Programmer’s Tutorial ♦ May 2000

Certain conventions are used in the StarBasic examples throughout this book. The
first letter of a variable always indicates its type as described in the following table.

Letter Meaning

a Structure

b Boolean (TRUE or FALSE)

e Enumeration. This variable can only have
one of a limited set of values.

f Float or double

m Array (aka sequence)

n Integer or long

o Object, service, or interface

s String

x Interface, to indicate that only operations of
a particular interface of an object are used

v Variant, Any

Introduction 11

12 StarOffice Programmer’s Tutorial ♦ May 2000

CHAPTER 2

StarOffice API - Concepts

2.1 Services and Interfaces
In StarOffice API, a "service" is an abstract concept providing certain interfaces and
properties. Every implementation of a particular service must provide the same
interfaces. An interface is a collection of methods that provide a certain functionality.

Let’s use a car to illustrate these concepts. The abstract car provides two concrete
interfaces: XAccelerationControl and XDrivingDirection. Both interfaces
export methods, the first one for accelerating and slowing down, the second one to
turn the car left or right. In addition to these interfaces, the service Car has the
properties Color and Seats.

13

Figure 2–1 StarOffice API service concept

The Car service implements another service called GearChange. This service can be
implemented by either AutomaticGear or ControlGearEach of these services
contains one interface exporting different methods depending on the type of

14 StarOffice Programmer’s Tutorial ♦ May 2000

GearChange that is implemented: setForward() and setBackward() for
XAutomaticGearChange, gearUp()and gearDown() for XControlGear.

2.2 Modules
Modules group services, interfaces, types, enumerations and data structures. Some
StarOffice API modules are text, sheet, table, and drawing. Although they
correspond with certain parts of StarOffice, there is no strict one-to-one relationship
between modules in StarOffice API and StarOffice components: modules like style
and document provide generic services and interfaces that are not specific for one
part of StarOffice.

Figure 2–2 StarOffice API module structure

StarOffice API - Concepts 15

2.3 Components
Components implement StarOffice API services. You are never dealing directly with
them when you program in StarOffice API. They are accessible as beans which you
can incorporate into your own programs. This book will not cover how to do that.

16 StarOffice Programmer’s Tutorial ♦ May 2000

CHAPTER 3

Using StarOffice API - Basics

This chapter explains how to obtain a service. Every StarOffice API program has to
do this at least once, so this is a very important aspect. Furthermore, we’ll show you
how to set and get properties, how to access collections and how to handle events.
You will finally read about the StarOffice Reference Manual and how to read it.

3.1 Getting a Service
Services are paramount to programming in StarOffice API: You need interfaces for
virtually anything, and interfaces are provided by services. Therefore, the first thing
you do in most StarOffice API programs is to acquire a service.

� Independent services don’t need an environment to operate on. For example, if
you want to define new colors, you would use the ColorTable() service. This
type of service is created using createUnoService().

� Some services can only operate inside of a certain environment, these are
context-dependent services. For example, you can’t search for text outside of a
document nor can you create a cell without a spreadsheet. This type of services is
created by the generic Desktop() service. Another class of dependent services
are those providing no interfaces at all. The PrinterDescriptor() service, for
example, contains no interfaces, it is only useful to set and get properties.

3.1.1 Independent Services
To get a StarOffice API service that works independent of a document, you call
createUnoService() with the service’s name as parameter. All services start with

17

"com.sun.star". The following part is the name of the module proper, for example
text or sheet. More accurately, com.sun.star.text is the complete name of the
module. The last part of the parameter is the service itself. This naming reflects the
hierarchical structure of StarOffice API. Module com.sun.star contains the module
text which itself contains a service TextDocument.

To get access to the ColorTable, you’d use

Dim oColorTable As Object

oColorTable=createUnoService("com.sun.star.drawing.ColorTable")

3.1.2 Context-dependent services
Services that operate on documents have to be created with the help of the
Desktop() service or through the active document in StarBasic. For example, to use
the text service, you’d have to open an existing text document first:

Dim mNoArgs()
Dim oDesktop, oDocument As Object
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = _
"file:///home/testuser/Office52/work/test.sdw"
oDocument = _
oDesktop.loadComponentFromURL(sUrl,"_blank",0,mNoArgs())

18 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 3–1 Opening an OfficeDocument

As you can see, you first obtain the Desktop() service. You then use the
loadComponentFromURL() method of its XComponentLoader interface to open
an existing document.

Alternatively, you could create a new StarOffice Calc or StarOffice Writer document
like this:

Dim oSpreadsheetDocument As Object
Dim oTextDocument As Object

Using StarOffice API - Basics 19

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl ="private:factory/scalc"
oSpreadsheetDocument = _
oDesktop.loadComponentFromURL(sUrl,"_blank",0,mNoArgs())
sUrl ="private:factory/swriter"
oTextDocument = _
oDesktop.loadComponentFromURL(sUrl,"_blank",0,mNoArgs)

The format and meaning of URLs used in StarOffice API are explained in Section
3.5.4 “URLs” on page 28.

When StarOffice API opens a document, it recognizes its type either from its file
name (for existing documents) or from the name of the factory (for new documents).
To open a file with a filter enforcing a certain format, cf. Section 4.2.1 “Importing
other Formats” on page 41.

Finally, you can use an active document to obtain access to its interfaces:

Dim oText As Object

oDocument = ThisComponent
oText = oDocument.Text

gets the Text() service of the current active TextDocument service.

3.1.3 Service Factories
Some services, especially the document services, provide a special
XMultiServiceFactory interface which can be used to acquire new services. You
can call createInstance() of this interface with the service’s name as parameter
to acquire a service.

To create a new RectangleShape object for your Calc document, you’d use

Dim oRectangleShape As Object

oRectangleShape = _
oCalcDocument.createInstance("com.sun.star.drawing.RectangleShape")

Similarly, to create a new paragraph style, you’d use

Dim oStyle as Object

oStyle=oDocument.createInstance("com.sun.star.style.ParagraphStyle")

3.1.4 Which services does StarOffice API provide
The list of services provided by StarOffice API is too long to include here. We will just
mention some of the available modules and the most important services they offer

20 StarOffice Programmer’s Tutorial ♦ May 2000

� com.sun.star.chart contains the services for charting. The most important one
is ChartDocument() that specifies the data to use in the chart and some general
characteristics.

� com.sun.star.drawing collects all services used for drawing line, rectangles,
circles etc.

� com.sun.star.frame contains the Desktop() service. You use this service to
open existing documents or create new ones.

� com.sun.star.presentation provides all services to create and work with
presentations.

� com.sun.star.sheet contains services for spreadsheets. Its
SpreadheetDocument() service is used to work with spreadsheets.

� com.sun.star.table provides all services for tables in text documents and
spreadsheets.

� com.sun.star.text groups the services dealing with text documents. The
TextDocument() service provides all interfaces needed to work with text
documents.

3.2 Properties
Properties (also called attributes sometimes) are values that determine the
characteristics of a service. For example, the fill color is a property of the
ShapeDescriptor service. Some services have a fixed set of properties (again,
ShapeDescriptor is an example). Others use varying property sets, since certain
properties need not always exist.

Properties are "name-value" pairs. The "name" is the name of the property, while
"value" contains its current value. For example, FillColor is the name of the
property describing the fill color in a ShapeDescriptor and its value can be
something like RGB(255,0,0)() (which is full red). If the number of properties is
fixed, you can use simple assignments in StarBasic to set or retrieve their values:

Dim nOldColor As Long

nOldColor = oRectangleShape.FillColor
oRectangleShape.FillColor = RGB(255,0,0)

REM ...

oRectangleShape.FillColor = nOldColor

In this example, we save the current setting of the fill color in nOldColor and then
change the fill color to red. Later, the old color is restored.

Sometimes you are not dealing with single properties, but with a sequence of them.
Such sequences are implemented as arrays in StarBasic. For example, to open a

Using StarOffice API - Basics 21

document, you will have to provide several properties to
loadComponentFromURL(). The approach is straightforward:

Dim mFileProperties(2) As New com.sun.star.beans.PropertyValue

mFileProperties(0).Name="FilterName"
mFileProperties(0).Value="swriter: StarWriter 5.0"

mFileProperties(1).Name="AsTemplate"
mFileProperties(1).Value=true

Note that in StarBasic’s Dim() statement you specify the highest array index, not the
number of elements. See Section 3.5.2.2 “Structures” on page 26 for related
information.

3.3 Collections and Containers
Some of the StarOffice API components are bundled in "collections" and "containers".
For example, the tables in a spreadsheet are a considered as a "collection of
spreadsheets". Similarly, a text document can be looked at as a "collection of
paragraphs". Collections come in three flavours:

1. Each element has a name, like the tables in a spreadsheet (named access).

2. Elements have no names but can be accessed by index.

3. Elements have no names and can be accessed only in sequential order
(enumeration access).

Some containers provide several access methods. For instance, tables in a sheet
document can be addressed either by name or by index.

3.3.1 Named access
To access collections with named elements, you use the XNameAccess interface.
Although this may sound complicated, its usage is fairly natural:

Dim oSheets, oSheet As Object

oSheets = oCalcDocument.Sheets
oSheet = oSheets.getByName("Sheet1")
Dim oStyleFamilies As Object
oStyleFamilies = oDocument.StyleFamilies
oParagraphStyles = oStyleFamilies.getByName("ParagraphStyles")

stores the table with the name "Sheet1" in oSheet. We assume here that oSheets is
a collection of spreadsheets. The next lines copy the names of all paragraph styles to
oParagraphStyles.

22 StarOffice Programmer’s Tutorial ♦ May 2000

You can find all names in a named collection with the method getElementNames()
which returns a sequence of strings (see Section 3.5.2.3 “Sequences” on page 27. The
following code snippet displays the names of all style families for a document:

oStyleFamilies = oDocument.StyleFamilies
mFamilyNames = oStyleFamilies.getElementNames
For i%=LBound(mFamilyNames) To UBound(mFamilyNames)

Print mFamilyNames(i%)
Next i%

To find out if a named collection contains a certain element, you can use the
hasByName() method. It returns TRUE if the element exists, FALSE otherwise.

While the methods mentioned so far are available for all objects providing the
XNameAccess() interface, some of the more advanced facilities are only available
with the XNameContainer() interface. It provides two methods to add and remove
elements by name. To add a new element to a name container, you’d use
insertByName() like this:

oParagraphStyles.insertByName("myParagraphStyle", oStyle)

and to remove an element, you’d write

oParagraphStyles.removeByName("myParagraphStyle")

Please note that some interfaces might overwrite the insertByName() method with
its own version, requiring additional parameters. You should therefore always check
the reference manual. A third interface, namely XNameReplace(), permits you to
replace existing elements:

oParagraphStyles.replaceByName("myParagraphStyle", oStyle)

Notice that the object you replace the old one with must exist before you can use
replaceByName().

3.3.2 Index access
To access indexed collections, you use the XIndexAccess interface like this:

oSheets = oCalcDocument.Sheets
oSheet = oSheets(0)

This code gets the collection of sheets from the current document and assigns the
first of them to oSheet. It will work only if the current document is a spreadsheet.
The simple usage of parentheses to access an indexed collection is some syntactic
sugar provided by StarBasic. The complete method call would be oSheet =
oSheets.getByIndex(0)().

Using StarOffice API - Basics 23

Warning - Please note that the first element of an indexed collection is numbered
zero, not one. To access all elements in a collection with three elements, you’d use
something like

For i%=0 To 2
oSheet=oSheets(i%)
REM do something with oSheet

Next i%

You can determine the number of elements in an indexed collection with the
getCount() method:

For i%=0 To oSheets.getCount() - 1
REM do something with oSheets(i%)

Next i%

To add a new element to an indexed collection, you can use the method
insertByIndex(), if the service provides the XIndexContainer interface. To
append an element, use the highest index plus one. In some cases,
insertByIndex() might require additional parameters, so you should always
make sure how to call it by checking the StarOffice API Reference Manual for the
particular service. Similarly, to remove an element you use removeByIndex(),
provided that the service provides the XIndexContainer interface.

Finally, you can replace an element with another object if the object provides the
XIndexReplace() service.

oList.replaceByIndex(0,oNew)

This replaces the first element of oList with oNew, which you must have created
before you can call replaceByIndex().()

3.3.3 Enumeration access
Finally, to access enumerated collections, you use the XEnumerationAccess
interface. The elements of an enumerated collections can only be accessed
sequentially, starting from the first one. An example looks like this:

oParagraphEnumeration = oDocument.Text.createEnumeration
While (oParagraphEnumeration.hasMoreElements)

oParagraph = oParagraphEnumeration.nextElement
REM do something with oParagraph

Wend

This code can be used to step through all paragraphs in a text document.

24 StarOffice Programmer’s Tutorial ♦ May 2000

3.4 Events
Events are a well known concept in GUI models. They enable the application to react
to asynchronous input: When the user clicks on a button, the underlying GUI system
forwards this event to a previously registered procedure inside the application, the
event handler. This procedure "knows" how to react on the click.

StarOffice API uses a similar concept which is closely modeled after the one used in
JavaBeans. Events are, for example, a user typing something into an input field or an
e-mail arriving in the inbox. A program interested in events has to register a handler,
called "listener" in StarOffice API. These listeners are indispensable if you are
working with local or remote files, newsgroups, or email in StarOffice API.

Many event listeners handle several events at once. They use one of the input
parameters (often called event) to determine the kind of event passed to them. A
notable exception to this rule are small subroutines handling user clicks and input in
StarBasic dialogs. Each of them is associated with a certain control in the dialog and
handles only the user interaction with this control. All this happens outside of
StarOffice API, but you’ll probably put these event handlers in the same StarBasic
module as the other subroutines.

3.5 Understanding the StarOffice API
Reference Manual
The StarOffice API Reference Manual is generated automatically from the
specification of StarOffice API. This guarantees that it is up-to-date and accurate. But
as StarOffice API is not written for any particular programming language, the
manual doesn’t provide specialized information needed to write StarBasic programs.
This chapter sheds some light on the terminology and structure of the StarOffice API
Reference Manual and explains how to translate its terminology into StarBasic
statements and types.

3.5.1 Properties
All properties are accessed directly by name in StarBasic. To set the fill color of a
rectangle, you write for example

oRectangleShape.fillColor = RGB(255,0,0)

and to retrieve the current font name, you use

Using StarOffice API - Basics 25

Dim sFont As String

sFont = oStyle.CharFontName

3.5.2 Types
StarOffice API implements its own datatypes. These types fall in three categories:
enumerations, structures, and sequences. We’ll explain each of these categories in the
following sections.

3.5.2.1 Enumerations
Enumerations are sets of named constants. For example, an enumeration color
might consist of red, blue, and green. A variable of type color could only
represent one of these values. Usually, the values are small integers (0, 1, ...), but this
is an implementation detail. You should always use the name of the enumeration
constant, never the number itself. Enumerations are represented like this in the
StarOffice API Reference Manual:

enum VerticalAlignment: VerticalAlignment

Field Summary

TOP

MIDDLE

BOTTOM

This example is from the module com.sun.star.style. To specify a middle
vertical alignment, you’d have to write
com.sun.star.style.VerticalAlignment.MIDDLE. Case is important here.
Using com.sun.star.style.VerticalAlignment.middle instead would thus
lead to unexpected results.

3.5.2.2 Structures
The use of structures is straightforward. You append the name of the structure
element to the variable name like for properties:

Dim aProperty As New com.sun.star.beans.PropertyValue

aProperty.Name="Font"
aProperty.Value="Times"

sets the two elements in a com.sun.star.beans.propertyValue structure.

Due to design decisions in StarBasic, you can’t set the elements of a structure inside
an object directly. Instead, you have to use

26 StarOffice Programmer’s Tutorial ♦ May 2000

aStruct.element1 = value
oObj.structMember1 = aStruct

Here aStruct is a structure with at least one element element1. This element is set
to value. The whole structure is then assigned to the structMember1 of oObj,
assuming that oObj is a structured object. Trying to assign a value to an element
inside an object’s struct in one step will not work in StarBasic. Consequently, you
can’t say

REM The following code will NOT work
oObj.structMember1.element1 = value

3.5.2.3 Sequences
sequence <aType> before a value means that you have to provide an array of
values or that an array of values is returned. For example sequence <string>
getAvailableServiceNames() means that the method
getAvailableServiceNames() returns an array of strings. To step through it,
you’d use something like

Dim n As Integer
Dim mServiceNames As Variant

mServiceNames=oDocument.getAvailableServiceNames()
For n = LBound(mServiceNames) To UBound(mServiceNames)

print mServiceNames(n)
Next n

getAvailableServiceNames() is provided by the interface
XMultiServiceFactory, the sequence of strings is the list of available Services
that can be created with this factory. If you are only interested in the number of
elements, you can use the getCount() method. On the other hand, if a method
expects a <sequence> of parameters, you’ll have to create the appropriate array
first. If the base type of the array is a simple one like string, you’d use something like

Dim mString(9) As String

Objects like mPropertyArray are defined in StarBasic using the new() operator
and the name of the object:

Dim mPropertyArray(9) As New com.sun.star.beans.PropertyValue

Warning - This statement creates an array with 10 elements, numbered from 0 to 9.
If you have some programming experience with C or C++, you should keep in mind
that you specify the highest index for an array, not the number of elements.

If a method expects a sequence as input parameter, you have to pass it with trailing
empty parentheses in StarBasic, for example

Dim mFileProperties(0) As New com.sun.star.beans.PropertyValue

Using StarOffice API - Basics 27

Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "file:///home/testuser/Office52/work/csv.doc"
mFileProperties(0).Name = "FilterName"
mFileProperties(0).Value = _
"scalc: Text - txt - csv (StarCalc)"
oDocument = oDesktop.loadComponentFromURL(sUrl,"_blank",_
0,mFileProperties())

The parameter mFileProperties is a sequence, which is indicated by the ()
following its name.

3.5.3 Constants
Similarly, constants are used in StarBasic by writing down their full name. For
example, the Reference Manual for text module contains this part

constants ControlCharacter
{

const short PARAGRAPH_BREAK = 0;
const short LINE_BREAK = 1;
const short HARD_HYPHEN = 2;
const short SOFT_HYPHEN = 3;
const short HARD_SPACE = 4;

};

To specify a line break in StarBasic, you’d use
com.sun.star.text.ControlCharacter.LINE_BREAK. Text is the module,
ControlCharacter the name of the constants group and LINE_BREAK the name of
the constant.

If you are used to the fact that StarBasic treats all variables, functions, methods, and
subroutines as case insensitive, you must be very attentive when you use constants.
Their names are always case sensitive. This means that using
com.sun.star.text.controlCharacter.LINE_BREAK will generate a runtime
error, because the correct name of the constants group is ControlCharacter with
an uppercase C.

3.5.4 URLs
Some functions expect a URL as a parameter, for example
loadComponentFromUrl(). Most URLs are written as usual. However, to specify a
file on a Windows machine, you have to provide the drive like this: "file:///E|/
...". "E" is the drive letter.

Some URLs are used to create empty documents of a certain type. For example
"private:factory/swriter" is an URL that causes StarOffice API to create an
empty StarOffice Writer document. All these URLs begin with private:factory:.

28 StarOffice Programmer’s Tutorial ♦ May 2000

The next part describes the type of document to create: swriter for StarOffice
Writer, scalc for StarOffice Calc, sdraw for StarDraw.

Another kind of URL refers to StarOffice concepts. For example, ".chaos/
news-box" refers to the newsgroup folder in StarOffice and ".chaos/out-box"
designates the folder for outgoing email.

The following table lists the URLs used in StarOffice API. The first part of an URL
(before the colon) is the service. This should not be confused with a StarOffice API
service. Most service names in URLs are used throughout the internet, while
StarOffice API services have no meaning outside of StarOffice API.

Service Meaning Example

http: Get an HTML file from a
local or remote machine

http://www.sun.com/
staroffice

retrieves the staroffice home
page from www.sun.com.

ftp: Get any file from a local or
remote machine, usually via
anonymous FTP.

ftp://ftp.uu.net

opens an anonymous FTP
connection to ftp.uu.net.

file: Get a file from the local
machine

file:///home/ck/
.emacs

retrieves the file .emacs
from the directory /home/
ck on the local machine.

news: Establish a connection to an
NNTP-News server

news://
newshost.somewhere.com

connects to the NNTP server
on the machine
newshost.smoewhere.com

private:factory: Private URL used in
StarOffice API to create
documents.

private:factory /
swriter

creates a StarOffice Writer
document.

Using StarOffice API - Basics 29

30 StarOffice Programmer’s Tutorial ♦ May 2000

CHAPTER 4

Using StarOffice API - Building blocks

This chapter explains some basic techniques useful for StarOffice API applications.
Some of the examples are not standalone programs but building blocks which you
can fit together with others to build an application. They show you how to solve the
basic tasks in each StarOffice component. We’ll occasionally use UML diagrams to
illustrate the interfaces and services. Appendix A explains the meaning of these
diagrams.

4.1 Styles
Styles are collections of formatting attributes that are accessible under a common
name. If you have ever worked with a word processor, you are probably already
familiar with styles: You use a heading1 style for first level headings, heading2
for second level headings, and body or standard for normal text. If you alter one
aspect of the style, all paragraphs using it change as well. This makes it possible to
change the font for all level one headings from Times to Helvetica or to change the
font size for all third level headings with one single command.

Usage of styles is not limited to paragraphs, nor even to text documents. Frames,
cells in a spreadsheet, graphics shapes, even single characters can be formatted with
styles. Since they are ubiquitous, we present them here rather then in the sections on
text or spreadsheets. Some of the examples here will contain code that becomes clear
only later when you read the section on the corresponding module.

31

4.1.1 Style basics
For the following examples, we will assume that you have a small text document
containing a headline and just one paragraph of text. It can be created like this:

Global oDesktop As Object
Global oDocument As Object
Global oText As Object
Global oCursor As Object
Global oStyleFamilies As Object
Global oParagraphStyles As Object
Global oStyle As Object
Global n As Integer

Sub style_init
Dim mNoArgs() REM Empty Sequence
Dim sMyText As String
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "private:factory/swriter"
oDocument = oDesktop.LoadComponentFromURL(sUrl,"_blank",0,mNoArgs)
oText = oDocument.Text
sMyText = "A very short paragraph for illustration only"
oCursor = oText.createTextCursor()
oText.insertString(oCursor,"Headline",FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,FALSE)
oText.insertString(oCursor,sMyText, FALSE)

End Sub

The new document contains two paragraphs, both formatted with the standard
style. Don’t worry about the details here, the meaning of insertString() and the
other methods will be explained in the section on text. To change the first paragraph
so that it uses a heading style, you’d use these lines:

oCursor.gotoStart(FALSE)
oCursor.gotoEndOfParagraph(TRUE)
oCursor.paraStyle = "Heading"

This code first selects the first paragraph, which contains only the single word
Headline, by moving the cursor to the start of the document and then to the end of
this paragraph. We’ll explain cursors in more detail later (see Section 4.3.2 “Moving
around” on page 51). Finally, the paraStyle property of the paragraph is set to the
name of the heading style. This last step effectively applies the style to the
paragraph.

The approach just shown works if you are certain about the predefined paragraph
styles. However, in a German version of StarOffice, a heading style would be called
Überschrift or Titel. If you are not sure which paragraph styles are available,
you can find out by:

Dim sMsg As String

oStyleFamilies = oDocument.StyleFamilies
oParagraphStyles = oStyleFamilies.getByName("ParagraphStyles")

32 StarOffice Programmer’s Tutorial ♦ May 2000

For n = 0 To oParagraphStyles.Count - 1
sMsg=sMsg + oParagraphStyles(n).Name + " "

Next n
MsgBox sMsg,0,"ParagraphStyles"

The styles are grouped in named families. Which families are available depends on
the type of document you are working on. For example, text documents provide
PageStyles, CharacterStyles, FrameStyles, and NumberingStyles besides
the ParagraphStyles. A spreadsheet, on the other hand, knows about
CellStyles and PageStyles families only.

Figure 4–1 Style families of a TextDocument

To get the names of all style families available in a document, you can use this code:

Dim mFamilyNames As Variant

sMsg=""
oStyleFamilies = oDocument.StyleFamilies
mFamilyNames = oStyleFamilies.getElementNames()
For n = LBound(mFamilyNames) To UBound(mFamilyNames)

sMsg=sMsg + mFamilyNames(n) + " "
Next n
MsgBox sMsg,0,"StyleFamilies"

To summarize: If you want to be sure that a certain style exists, you must

1. check if the desired style family exists

2. find out if it contains the style you need.

Using StarOffice API - Building blocks 33

Let’s get back to the example above. Suppose that you don’t know the name of the
style used for headings and that you can’t determine it from the available paragraph
styles. You can then either try to find a suitable style or define your own one.

4.1.2 Finding a suitable style
If you don’t know the name of the paragraph style you want to apply, you might
want to search through the available styles to find one that suits your needs best.
Suppose you wanted to use the style providing the largest bold Helvetica font for
your headline. You could then try to find one like this:

Dim nFontSize As Long
Dim sFoundStyle As String
Dim sFontName As String

oStyleFamilies = oDocument.StyleFamilies
oParagraphStyles = oStyleFamilies.getByName("ParagraphStyles")
nFontSize = -1
For n = 0 To oParagraphStyles.Count - 1

oStyle = oParagraphStyles(n)
sFontName=lCase(oStyle.charFontName)
If (sFontName = "helvetica" And _

oStyle.charHeight > nFontSize) Then
nFontSize = oStyle.charHeight
sFoundStyle = oStyle.Name
oCursor.paraStyle = sFoundStyle
Exit For

End If
Next n

You should be aware that this example might not produce exactly what you want. It
will certainly find the paragraph style providing the tallest bold Helvetica setting, if
such a style exists at all. However, if all paragraph styles use a different font (e.g.
Arial), it will use the style heading for the first paragraph. This approach certainly
fails if heading is not defined. Furthermore, although the style found by this
program provides the tallest bold Helvetica setting, but it might have other
attributes that you don’t like. For example, the alignment could be defined as
centered or right, while you’d rather have a left aligned heading. Defining your own
style overcomes these shortcomings.

4.1.3 Defining your own style
To be absolutely sure that a style has all the properties you want it to have, your best
bet is to define it yourself. We will use the example from Section 4.1.1 “Style basics”
on page 32 again, this time defining the style myheading and applying it to the first
paragraph. The following code fragment shows the necessary steps to specify your
own style.

34 StarOffice Programmer’s Tutorial ♦ May 2000

oStyleFamilies = oDocument.StyleFamilies
oParagraphStyles = oStyleFamilies.getByName("ParagraphStyles")
oStyle = _
oDocument.createInstance("com.sun.star.style.ParagraphStyle")
oParagraphStyles.insertByName("myheading",oStyle)
oStyle.Name = "myheading"
oStyle.CharFontName = "Helvetica"
oStyle.CharHeight = 36
oStyle.CharWeight = com.sun.star.awt.FontWeight.BOLD
oStyle.CharAutoKerning = TRUE
oStyle.ParaAdjust = _
com.sun.star.style.ParagraphAdjust.LEFT
oStyle.ParaFirstLineIndent = 0
oStyle.breakType = _
com.sun.star.style.BreakType.PAGE_BEFORE
oCursor.gotoStart(FALSE)
oCursor.gotoEndOfParagraph(TRUE)
oCursor.paraStyle = "myheading"

First of all, this example gets the named collection of all paragraph styles. It then
creates a new paragraph style using createInstance() and adds it as new
element to the collection with insertByName(). Note that this must be done before
you can set the properties for the new style. Those properties are then defined so that
a 36 point bold Helvetica is used. We set CharAutoKerning because kerning should
always be used at this point size. The paragraph will be left-adjusted, and we don’t
want any indentation. The breakType property specifies if a page or column break
occurs before this paragraph, after it, both before and after, or not at all. It is set to
"before" here, because we want each myheading heading to start on a new page.

This last point is fairly important. If you have ever worked with StarWriter, you may
have inserted a page break manually via Insert/Manual Break. The same dialog
offers to insert a line break, a column break or a page break. While a line break is
represented by a control character (see Section 4.3.4 “Inserting paragraph breaks,
special characters, and page breaks” on page 53), column and page breaks are
actually properties of a paragraph. They can be set for the paragraph style or directly
for the paragraph itself. In the first case they apply to all paragraphs with this style,
in the latter case they influence only the current paragraph.

When all properties for the new heading are set, it is assigned to the paragraph as in
the previous section.

4.1.4 Hard formatting
What you’ve seen so far is called "soft" formatting: You define a style and apply it to
all objects that you want to appear in that style. They are displayed using all
properties of this style. If you change one style property, all objects change their
appearance as well. "Hard" formatting is what many people are used to in a word
processor. They select a single word and click on the B icon to make it appear bold.
This formatting is called "hard" because it will always override the style defined for

Using StarOffice API - Building blocks 35

this paragraph. In other words: Hard formatting means to set a certain property
directly without changing the object’s style.

Hard formatting is generally considered bad practice because it makes changes very
difficult. Suppose you had a large document with captions of figures like this:
Figure 1.1: Descriptive Text. In order to make the Figure 1.1: part stand
out, you have it hard formatted as bold. The first time your boss sees the
document, she tells you to change all these captions to use normal weight for the
whole text - who’ll have to walk through your document manually to modify every
single caption. Had you soft formatted them, using a character format for the first
part of the caption, you could have simply changed that.

Having said that, we will show you how to hard format text in StarOffice API. Since
many documents contain hard formats, you should know how to create and change
them. We assume the document has been created as described before and contains
only the headline and the single paragraph .

A very short paragraph for illustration only:

oCursor.gotoStart(FALSE)
oCursor.gotoNextParagraph(FALSE)
oCursor.gotoNextWord(FALSE)
oCursor.gotoEndOfWord(TRUE)
oCursor.charWeight = com.sun.star.awt.FontWeight.BOLD

The preceding piece of code changes the word very to bold. As you can see, most of
the code is needed to position the cursor so that it addresses the desired word.
Changing it to bold is just a simple assignment.

As you have seen above, you can format a paragraph in a certain style by assigning
the style’s name to the paraStyle property of the paragraph. Of course, you can
also inquire a paragraph’s style. However, the result of this inquiry might require
some interpretation if the paragraph contains hard formatting. If you change the
previous code so that it looks like this:

oCursor.gotoStart(FALSE)
oCursor.gotoNextParagraph(FALSE)
oCursor.gotoEndOfParagraph(TRUE)
msgbox "Style: " + oCursor.paraStyle _

+ Chr(13) + "Font: " + oCursor.charFontName _
+ Chr(13) + "Weight: " + oCursor.charWeight

oCursor.gotoStartOfParagraph(FALSE)
oCursor.gotoNextWord(FALSE)
oCursor.gotoEndOfWord(TRUE)
oCursor.charWeight = com.sun.star.awt.FontWeight.BOLD
oCursor.gotoStartOfParagraph(FALSE)
oCursor.gotoEndOfParagraph(TRUE)
msgbox "Style: " + oCursor.paraStyle _

+ Chr(13) + "Font: " + oCursor.charFontName _
+ Chr(13) + "Weight: " + oCursor.charWeight _
+ Chr(13) + "Weight(Default): " + oCursor.getPropertyDefault("CharWeight")

Both message boxes will display the style name, the font name and a weight of
usually 100, which is the value of the constant

36 StarOffice Programmer’s Tutorial ♦ May 2000

com.sun.star.awt.FontWeight.NORMAL. This is in fact the default setting for
this paragraph style. Changing very to bold doesn’t directly affect the default
weight of the paragraph. But since this attribute is no longer the same for every
word of the paragraph, its propertyState is changed. Before the modification of
very, it was DEFAULT_VALUE, afterwards it is AMBIGUOUS_VALUE. You can inquire
the propertyState like this

oCursor.getPropertyState("CharWeight")

This method returns com.sun.star.beans.PropertyState.DEFAULT_VALUE
for the default, com.sun.star.beans.PropertyState.AMBIGUOUS_VALUE for
ambiguous and com.sun.star.beans.PropertyState.DIRECT_VALUE for a
hard format, representing the constants. See the StarOffice reference documentation
regarding the interface XPropertyState in com.sun.star.beans.

You can remove hard formatting in a text range with the method
setPropertyToDefault(). For example, to make sure that a text range uses the
style’s font, size and weight, you could use these lines:

oCursor.setPropertyToDefault("CharWeight")
oCursor.setPropertyToDefault("CharFontName")
oCursor.setPropertyToDefault("CharHeight")

This code does not reset any italic portions to upright (or vice versa), you’d need to
reset the property CharPosture for this.

Note - Please note that the strings passed to setPropertyToDefault() are case
sensitive, charFontName would not work in the sample code above.

4.1.5 Headers, footers and tab stops
Headers and footers are part of the page styles. They are mostly used in longer
documents to display the page number and other information like the title of the
current chapter. Before you can define headers and footers, you have to turn them on
like this

Dim oPageStyles As Object
Dim oStdPage As Object

oPageStyles = oStyleFamilies.getByName("PageStyles")
oStdPage = oPageStyles.getByName("Standard")
oStdPage.HeaderOn = TRUE
oStdPage.FooterOn = TRUE

Here we enable headers and footers for the Standard page style. To have the
header display some text, you use something like this:

Dim oHeader As Object

oHeader = oStdPage.HeaderText

Using StarOffice API - Building blocks 37

oHeader.String = "My Header"

This is obviously the simplest thing to do; it will display the text "My Header" in the
header on every page. If you want some fancy formatting, you have to modify the
style used for the header as in the next lines of code:

Dim oHeaderText As Object
Dim oHeaderCursor As Object

oHeaderText = oHeader.Text
oHeaderCursor = oHeaderText.createTextCursor()
oParagraphStyles = oStyleFamilies.getByName("ParagraphStyles")
oStyle = oParagraphStyles.getByName(oHeaderCursor.paraStyle)
oStyle.CharPosture = com.sun.star.awt.FontSlant.ITALIC

As you can see, it is easy to get at the style used for the header. Its name is found in
the paraStyle property of the XTextCursor interface for the header. Once you
know the name of the style (which depends on the local language settings), you can
change its properties as shown before. The sample above changes the CharPosture
property so that the header text appears in italics.

While a static header is appropriate to show the title of a document, there a more
dynamic data that might you want to appear in the footer. One of them is obviously
the page number. To have it shown in the footer, you can write something like the
following:

Dim oFooter
Dim oFooterText As Object
Dim oFooterCursor As Object
Dim oPageNumber As Object

oFooter = oStdPage.FooterText
oFooterText = oFooter.Text
oFooterCursor = oFooterText.createTextCursor()
oFooterText.insertString(oFooterCursor,"Page ", FALSE)
oPageNumber = _
oDocument.createInstance("com.sun.star.text.TextField.PageNumber")
oPageNumber.NumberingType = _

com.sun.star.style.NumberingType.ARABIC
oFooterText.insertTextContent(oFooterCursor, oPageNumber, FALSE)

The first few lines are similar to the previous examples showing the usage of
headers. We then insert the string Page in the footer and create the text field
pageNumber which is inserted right afterwards. Its NumberingType property is set
so that the page numbers are displayed using arabic digits. To learn more about text
fields, refer to Section 4.3.7 “Inserting tables, frames, etc.” on page 58.

If you have more than one page in your document, you will notice that the page
number inserted with the code above appears always at the left margin. Typically,
one would want the even numbers to appear at the left margin and the odd numbers
at the right margin. To accomplish this, you have to use a left and a right footer like
this:

38 StarOffice Programmer’s Tutorial ♦ May 2000

Dim oFooterLeft As Object
Dim oFooterRight As Object
Dim oFooterTextLeft As Object
Dim oFooterTextRight As Object
Dim oFooterCursorLeft As Object
Dim oFooterCursorRight As Object

oStdPage.FooterShareContent=TRUE
oFooterLeft = oStdPage.FooterTextLeft
oFooterTextLeft = oFooterLeft.Text
oFooterCursorLeft = oFooterTextLeft.createTextCursor()
oFooterTextLeft.insertString(oFooterCursorLeft,"Page ", FALSE)
oPageNumber = _
oDocument.createInstance("com.sun.star.text.TextField.PageNumber")
oPageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC
oFooterTextLeft.insertTextContent(oFooterCursorLeft, oPageNumber, FALSE)
oFooterRight = oStdPage.FooterTextRight
oFooterTextRight = oFooterRight.Text
oFooterCursorRight = oFooterTextRight.createTextCursor()
oFooterTextRight.insertString(oFooterCursorRight,"Page ", FALSE)
oPageNumber = _
oDocument.createInstance("com.sun.star.text.TextField.PageNumber")
oPageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC
oFooterTextRight.insertTextContent(oFooterCursorRight, oPageNumber, FALSE)

This does not introduce anything really new. Instead of using the FooterText
property of the Standard page style, you use FooterTextLeft and
FooterTextRight. If you run this code, you’ll notice that the page numbers appear
twice on each page. To have the FooterTextRight appear only on right (odd)
pages, you would have to set the page style’s FooterShareContent property to
FALSE.

With this value, the page number appears only once on every page. However, it is
flush left on even and odd pages, and one would rather want it to appear at the
right margin on an odd page. To put the odd page numbers at the right margin, you
must use a tab stop:

Dim newstops (0) As Object
Dim tabStop As New com.sun.star.style.TabStop
Dim oFooterStyle As Object
Dim h As Long

oFooterStyle = _
oParagraphStyles.getByName(oFooterCursorRight.paraStyle)
h = oStdPage.Size.Width - oStdPage.LeftMargin - _

oStdPage.RightMargin
tabStop.position = h
tabStop.alignment = com.sun.star.style.TabAlign.RIGHT
newstops(0) = tabStop
oFooterStyle.paraTabStops = newstops()

Tab stops belong to a paragraph style, so we have to get the style used for the right
footer first. We then calculate the width of the footer line by subtracting the page’s
left and right margin from its width and store this value in h. The position of the tab
stop is set to this value and right alignment is specified for it. The footer style’s
paraTabStops property is then overwritten with an array which contains only the

Using StarOffice API - Building blocks 39

newly defined tab stop. Any tab stops defined for this paragraph style before will no
longer exist afterwards, so make sure you understand the implications of changing
the paragraph attributes.

Of course, defining the tab stop is only part of the solution, you have to jump to it as
well. The code to insert the page number for odd pages looks like this:

oFooterTextRight.insertString(oFooterCursorRight,_
Chr(9)+"Page ", FALSE)
oPageNumber = _
oDocument.createInstance("com.sun.star.text.TextField.PageNumber")
oPageNumber.NumberingType = _
com.sun.star.style.NumberingType.ARABIC
oFooterTextRight.insertTextContent(oFooterCursorRight,_

oPageNumber, FALSE)

Note the usage of Chr(9) in the call to insertString() to insert a literal tab
character.

Finally, we will show you how to include the title of the current chapter in the footer
of each page. First of all, you have to create a text field that contains the chapter’s
title:

Dim oChapterField As Object

oChapterField = _
oDocument.createInstance("com.sun.star.text.TextField.Chapter")
oChapterField.Level = 0
oChapterField.chapterFormat = 1

The preceding lines create a text field which uses the heading for numbering level 0
(the top level) and includes the heading’s text (this is achieved by setting the
chapterFormat property). StarOffice API has certain default settings associating
paragraph styles with numbering levels. To be sure that it uses the style you want,
you have to set it like this:

Dim oChapterSettings As Object
Dim mLevel As Variant
Dim vProperty As Variant

oChapterSettings = oDocument.ChapterNumberingRules
mLevel = oChapterSettings.getByIndex(0)
For n = LBound(mLevel) To UBound(mLevel)

vProperty = mLevel(n)
If (vProperty.Name = "HeadingStyleName") Then
vProperty.Value = "Heading 1"

End If
mLevel(n) = vProperty

Next n
oChapterSettings.replaceByIndex(0,mLevel)

This piece of code retrieves the current settings for numbering level 0, which is the
one used in the text field above. It then loops over all properties until it finds the one
called HeadingStyleName. Its value is then set to Heading 1 and the chapter

40 StarOffice Programmer’s Tutorial ♦ May 2000

settings are updated. The last step is to insert the text field containing the chapter
name into the footer:

oFooterTextRight.insertTextContent(oFooterCursorRight, _
oChapterField, FALSE)

oFooterTextRight.insertString(oFooterCursorRight,_
Chr(9) + "Page ", FALSE)

oPageNumber = _
oDocument.createInstance("com.sun.star.text.TextField.PageNumber")

oPageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC
oFooterTextRight.insertTextContent(oFooterCursorRight,_

oPageNumber, FALSE)

This code inserts the text field with the chapter name at the left bottom and the
page number after a tab character at the right margin. This is ok for a right (odd)
page. You’d have to insert the fields for chapter and page the other way round for
the left (even) footer.

4.2 Importing, Exporting and Printing
Regardless of the type of document you are working with, you will occasionally
want to import files in other formats, you’ll most definitely want to save your work
and you will want to print documents. The following sections explain how to
achieve each of these goals.

4.2.1 Importing other Formats
Although you’ll be working with StarOffice files most of the time, you will
occasionally come across a file generated by another product. StarOffice provides
many filters for foreign formats permitting you to work with these files, and you can
use them from StarOffice API as well. Generally the ComponentLoader will select
the correct filter automatically, based on the extension of the file. In some cases,
however, you might want to force the use of a particular format. This might be
necessary if the contents of a file does not match the defaults of StarOffice, for
example if csv.doc contains comma separated values instead of a Word document
as the extension doc suggests.

Sub import1_sample
Dim mFileProperties(0) As New com.sun.star.beans.PropertyValue
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "file:///home/testuser/Office52/work/csv.doc"
mFileProperties(0).Name = "FilterName"
mFileProperties(0).Value =_
"scalc: Text - txt - csv (StarCalc)"

oDocument = oDesktop.loadComponentFromURL(sUrl,"_blank",_

Using StarOffice API - Building blocks 41

0,mFileProperties())
End Sub

As before, we use the Desktop() service to open the document. The important part
here is the property set mFileProperties. It contains only the property
"FilterName" with the value <factory>: <filtername>. Here, <factory> is one
of swriter, scalc, simpress, sdraw, smath, simage. The
<filtername> can be found in the file install.ini. In the future, you will be
able to retrieve it from the Registry() service of StarOffice API.

To use a document that contains a foreign file format, you may have to provide the
FilterFlags property to loadComponentFromUrl() to ensure that the
document is imported in a certain way. A CSV file, for example, can use commas or
semicolons to separate fields or it may use fields of fixed width. FilterFlags is
needed to specify these details. The value of this property is a single string that
contains all required information. For a CSV file, it is made up of five tokens,
separated by comma. The tokens are

1. Field separator(s) as ASCII values or the three letters FIX. If your fields are
separated by commas, this token is 44, if they are separated by semicolons and
tabs, the token would be 59/9. To treat several consecutive separators as one,
append the four letters /MRG to this token. If the file contains fixed width fields,
use the three letters FIX as the token.

2. The text delimiter as ASCII value. Use 34 for double quotes and 39 for single
quotes.

3. The character set in the file as string.

4. Number of the first line to convert. Set this to something other then 1 if you want
to skip lines at the beginning of the file.

5. This last token is the most complicated one. Its content depends on the value of
the first token.

� If it is FIX, this token is of the form start/format/start/format. Start
is the number of the first character for this field, with 0 being the leftmost
character in a line. Format is explained below.

� If you are not using fixed fields but separators, the form of the last token is
no/format/no/format where no is the number of the column, 1 being the
leftmost column.

Format specifies the content of a field. It is the number 1 for standard, 2 for text,
3, 4, and 5 for date values (MM/DD/YY, DD/MM/YY, YY/MM/DD
respectively), 6, 7, and 8 for text and 9 for fields to ignore. 10 is used to indicate
that the content of this field is US-English. This is particularly useful if you know
that a field contains decimal numbers which are formatted according to the US
system (using "." as decimal separator and "," as thousands separator). Using 10 as
format specifyer for this field tells StarOffice API to correctly interpret its
numerical content even if the decimal and thousands separator in your country
are different.

42 StarOffice Programmer’s Tutorial ♦ May 2000

Consider a file that contains four columns: the first one contains text delimited by
double quotes, the other columns contain numbers. The columns are separated by
commas. The FilterFlags for this file would be 44,34,SYSTEM,1,1/1/1/1/1/
1/1/1. A complete piece of code looks like this:

Sub import2_sample
Dim mFileProperties(1) As New com.sun.star.beans.PropertyValue
Dim sUrl As String

sUrl = "file:///home/ck/ix/ix0399/javaperf/jview.csv"
mFileProperties(0).Name = "FilterName"
mFileProperties(0).Value = "scalc: Text - txt - csv (StarCalc)"
mFileProperties(1).Name = "FilterFlags"
mFileProperties(1).Value = "44,34,SYSTEM,1,1/1/1/1/1/1/1/1"
oDesktop = createUNOService("com.sun.star.frame.Desktop")
oDocument = oDesktop.loadComponentFromURL(sUrl,_
"_blank",0,mFileProperties())

End Sub

4.2.2 Saving and exporting documents
If you have changed a document, you will probably want to save these changes. The
service OfficeDocument provides the interface XStorable which contains all the
necessary methods to store documents.

Figure 4–2 Storing documents

The simplest way to do this is to call the store() method:

oDocument.store()

saves the document under its original name. This works only if it existed before you
worked on it or if you have already saved a new document. To save a new
document for the first time, you’ll use

Using StarOffice API - Building blocks 43

Dim mFileProperties(0) As New com.sun.star.beans.PropertyValue
Dim sUrl As String

sUrl = "file:///complete/path/To/New/document"
mFileProperties(0).Name = "Overwrite"
mFileProperties(0).Value = FALSE
oDocument.storeAsURL(sUrl, mFileProperties())

This method will save the document in its native StarOffice format, but it will not
overwrite a possibly existing file of the same name. To replace existing files, you’ll
have to set the overwrite parameter to TRUE. To save the document in a foreign
format, you’ll have to specify a FilterName property as shown above in Section
4.2.1 “Importing other Formats” on page 41.

To make a save-document subroutine more robust, you can use two other properties
that help you decide what to do:

oDocument = ThisComponent
If (oDocument.isModified) Then

If (oDocument.hasLocation And (Not oDocument.isReadOnly)) Then
oDocument.store()

Else
oDocument.storeAsURL(sURL, mFileProperties())

End If
End If

This sample code checks first if the current document has been modified - there is no
need to save anything if it has not been changed. The sample chooses between
store() and storeAsURL() depending on two criteria: In order to use store(),
the document must have been saved before and it must be writeable. Only if both
conditions are met, store() can be used to save the document. In all other cases, a
new file is created. You’ll have to specify the correct values for the parameters URL
and mFileProperties before you can use this code.

4.2.3 Printing
Printing is not related to one particular type of document but it is still most
important for text. The interface xPrintable is contained in the service
OfficeDocument since all office documents have to provide printing.

44 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–3 Printing documents

Printing a complete document to the default printer is as easy as

Dim mPrintopts1()

oDocument.Print(mPrintopts1())

Now suppose you wanted to print only the first two pages:

Dim mPrintopts2(0) As New com.sun.star.beans.PropertyValue

mPrintopts2(0).Name="Pages"
mPrintopts2(0).Value="1-2"
oDocument.Print(mPrintopts2())

As usual, you define a property set and define the property Pages in it. To print
single pages, separate them with a semicolon:

mPrintopts2(0).Name="Pages"
mPrintopts2(0).Value="1-3; 7; 9"

prints pages 1, 3, 7, and 9. Other useful properties for printing are

Using StarOffice API - Building blocks 45

� FileName; set this to the name of a new file if you want to print to a file instead
of a printer.

� CopyCount; the number of copies you want to print.

� Sort; set to TRUE to print sorted copies. This is useful only if CopyCount is
greater than 2. With Sort set to TRUE, the copies are printed in order.

These properties apply to the print job. There is another set of properties used to
configure the printer itself.

To send the document to another printer, you’d have to choose this printer first:

Dim mPrinter(0) As New com.sun.star.beans.PropertyValue

mPrinter(0).Name="Name"
mPrinter(0).value="Other printer"
oDocument.Printer = mPrinter()

Then you can use print() as before or set print options first. Other useful printer
options are

� CanSetPaperFormat; this boolean indicates if you can use the PaperFormat
property to change the paper format.

� CanSetPaperOrientation; this boolean indicates if you can use the
PaperOrientation property to change the paper format.

� IsBusy; this boolean informs you if the printer is busy.

� PaperFormat; a constant selecting the paper format, use
com.sun.star.view.PaperFormat.USER for a user defined format.

� PaperOrientation; an integer selecting the paper orientation,
com.sun.star.view.PaperOrientation.PORTRAIT or
com.sun.star.view.PaperOrientation.LANDSCAPE

� PaperSize; if a user defined format has been set with the PaperFormat
property, specify the desired size here in 100ths of a millimeter. The size is a
structure of type com.sun.star.awt.Size with the components Width and
Height

The first three properties in this list are read-only - you can not set them for obvious
reasons.

4.3 Text
In this section, you’ll learn about some basic operations for text: Inserting and
retrieving it, navigating through it, searching and replacing text, importing foreign
formats and printing text documents.

46 StarOffice Programmer’s Tutorial ♦ May 2000

Text can never exist outside of a container, for example a text document or a spread
sheet. You must therefore open an existing document first or create a new one like
this:

Global oDesktop As Object
Global oDocument As Object
Global oText As Object

Sub textdoc_init
Dim mNoArgs() REM Empty Sequence
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "private:factory/swriter"
REM Or: sUrl = "file:///home/testuser/office52/work/text.sdw"
oDocument = oDesktop.LoadComponentFromURL(sUrl,"_blank",0,mNoArgs)
oText = oDocument.Text

End Sub

Note that calling LoadComponentFromURL() with this sURL creates a new
document. If you were using the sURL which is commented out here, the document
/home/testuser/office52/work/text.sdw would be opened instead. The
variable oDocument now provides all interfaces needed for text manipulation. In
the following sample code, we’ll leave out the part above above and assume that
oDocument has been created as described.

4.3.1 The structure of text documents
The basic structure of text documents is an enumeration of paragraphs and tables. If
you want to walk through the whole document, you should use this enumeration to
do so. Furthermore, a text document can contain frames, graphics, fields and other
objects providing a XTextContent interface. They are always anchored to a part of
the document (a page, a paragraph or a character). Because objects are named, you
can access them using getByName() on the appropriate collection.

Using StarOffice API - Building blocks 47

Figure 4–4 Structure of a TextDocument

The paragraphs of a document are neither named nor indexed so that you must
access them sequentially starting with the first paragraph. Although tables are
available in their own named collection they are always anchored to the preceding

48 StarOffice Programmer’s Tutorial ♦ May 2000

paragraph and belong to the normal flow of text. That’s the reason why they are
enumerated with the paragraphs.

Dim oTextEnum As Object, oTextElement As Object

oTextEnum = oDocument.Text.createEnumeration
While oTextEnum.hasMoreElements()

oTextElement = oTextEnum.nextElement()
REM Do something with the paragraph Or table

Wend

This piece of code will move you through all paragraphs and tables in the order in
which they appear in the document. It creates an enumeration of the objects in the
XText() interface with createEnumeration(). Then it uses
hasMoreElements() and nextElement() to iterate through this numeration.
nextElement() does two things at the same time: it returns the next element of the
enumeration and it moves beyond it. To skip tables, check each element for the
Paragraph() service like this:

If oTextElement.supportsService(_
"com.sun.star.text.Paragraph") Then

REM Code that works With paragraph only
End If

Now what is oTextElement really? Although we were talking about paragraphs
before, it is not always what you perceive as a document’s paragraph. Rather,
oTextElement is another enumeration where each element has the same style
attributes. More strictly, oTextElement is a Paragraph() service. You might think
of it as a collection of text portions where one portion ends when a text attribute like
font or color changes. You can walk through them like this:

Dim oTextPortionEnum As Object
Dim oTextPortion As Object

oTextPortionEnum = oTextElement.createEnumeration()
While oTextPortionEnum.hasMoreElements()

oTextPortion = oTextPortionEnum.nextElement()
REM Do something With the Text portion

Wend

Some examples:

� If the text of a document’s paragraph is formatted with the same attributes (font,
font weight, color etc.), the enumeration contains just one text portion which is the
complete paragraph.

� If you have one bold word in the middle of a document’s paragraph, the
enumeration will contain three text portions: First the text up to the bold word,
then the bold word itself, and finally the rest of the paragraph.

Using StarOffice API - Building blocks 49

Figure 4–5 Paragraph

You have to be aware of these enumerations in a paragraph if you want to inquire or
change its properties. For example: If you are dealing with a single text portion it is
sufficient to change the charFontName property of oTextElement to change the
font for the whole paragraph. If you have more than one text portion, you’ll have to
walk through the paragraph and check the charFontName property for each of
them:

oTextPortionEnum = oTextElement.createEnumeration
While oTextPortionEnum.hasMoreElements

oTextPortion = oTextPortionEnum.nextElement
Print oTextPortion.CharFontName

Wend

The font name for oTextElement is the one of the style used for this paragraph.
Each text portion may or may not override this default by specifying its own font
name. The actual font name for a portion is stored in its charFontName property.

50 StarOffice Programmer’s Tutorial ♦ May 2000

You can use the getPropertyState() method to find out if the font name of a
text portion is the one inherited from the paragraph style or if it overrides the
paragraph style ones:

Dim n As Integer

n = oTextPortion.getPropertyState("CharFontName")

n will be com.sun.star.beans.PropertyState.DEFAULT_VALUE which is
equal to 1, if the font name has not changed from the style’s font name,
com.sun.star.beans.PropertyState.DIRECT_VALUE (=2) if it has been
overriden by a hard format. A value of
com.sun.star.beans.PropertyState.AMBIGUOUS_VALUE (=0) for n indicates
that the text portion contains more than one font setting. In this case, the font name
is the one that has been set by the portion’s style. For more details, you can read the
StarOffice API Reference Manual on com.sun.star.beans.XPropertyState.

4.3.2 Moving around
Enumerations are fine if you want to walk through your document from start to end.
To move around deliberately, you need a TextCursor() service. Dont’t be confused
that the cursor on the screen does not move. A TextCursor() acts behind the
scenes. You create a TextCursor() like this:

Dim oCursor As Object

oText = oDocument.Text
oCursor = oText.createTextCursor()

Now you can change this cursor’s position in the text:

oCursor.goLeft(3,FALSE)

moves it three characters to the left,

oCursor.goRight(10,FALSE)

positions it ten characters to the right etc.

Besides the simple cursor movement by character we’ve just shown, there are other
more powerful interfaces: A page cursor moves between pages, a paragraph cursor
between paragraphs, a word cursor jumps from word to word, and a sentence
cursor moves between sentences. gotoNextSentence() and
gotoPreviousSentence() position the cursor on the next and previous sentence
in the document, respectively. Similarly, gotoNextParagraph() and
gotoPreviousParagraph() go to the next and previous paragraph;
gotoEndOfParagraph() and gotoStartOfParagraph() move to the
beginning and end of the current paragraph.

Using StarOffice API - Building blocks 51

A cursor is a means to move to a certain position in a document. However, it’s
never only a single position, although it may sometimes look like this. A cursor is
always a range of text, although the beginning and the end of this range may
coincide. In this case the range has zero length and is positioned between two
characters. We will show you what you can do with ranges in the next section.

4.3.3 Inserting and Changing text
Three basic steps are required to insert new text into a document:

1. create a cursor

2. select the position where you want to put the new text

3. insert the text.

The following examples will explain these steps in more detail.

Figure 4–6 Inserting and changing text

52 StarOffice Programmer’s Tutorial ♦ May 2000

You might be wondering what the FALSE parameter is doing in the cursor function
calls above - why can’t you simply say cursor.goRight(10)() to move ten
characters forward? The reason for this is simple. Since moving in a document is
almost always done with the purpose to do something with the text, StarOffice API
cursors are prepared to work. As long as you set the last parameter of the movement
functions to FALSE, you can simply insert text at the current cursor position with

oText.insertString(oCursor,_
"New Text at current oCursor position.",_
FALSE)

In these cases, the cursor position is the text range specified by a single character.

You can move around in the document and change the existing text by replacing it.
To do so, you must eventually set the last parameter of the movement functions to
TRUE, like in the following example.

oText = oDocument.Text
oCursor = oText.createTextCursor()
oCursor.gotoStart(FALSE)
oText.insertString(oCursor,"A piece of New Text And another one.",_
FALSE)
oCursor.gotoStart(FALSE)
oCursor.gotoNextWord(FALSE)
oCursor.gotoEndOfWord(TRUE)
oText.insertString(oCursor,"chunk",TRUE)

The current position is first set to the beginning of the document and text is inserted.
The cursor is then moved to the beginning of the next word. Now we "span" the
textRange with oCursor.gotoEndOfWord(TRUE)(), so that it extends from the
last position (the first character of "piece") to the current one (the last character of
"piece"). Finally, this span of text is replaced with the word "chunk".
insertString() replaces the text span, because its last parameter is TRUE. If you
wanted to insert text after the end of the spanned region, you’d set this value to
FALSE.

A region spanned by a cursor survives a call to insertString(). To switch back
to normal cursor movement (i.e. withouth spanning a region), you have to use
collapseToEnd() or collapseToStart(). The first function sets the current
cursor position to the end of the range, the second function sets it to the start.

4.3.4 Inserting paragraph breaks, special characters, and
page breaks
Documents hardly ever consist of one long piece of text but of several paragraphs.
You create a paragraph by inserting a "control character" after the text that makes up
the paragraph.

oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,FALSE)

Using StarOffice API - Building blocks 53

would start a new paragraph at the end of the current textRange. Again, you must
move the range beyond the newly inserted text with c.collapseToEnd(), if you
want to insert text into the new paragraph.

Similarly, to insert a line break, you’d use

oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.LINE_BREAK,FALSE)

The following control characters are defined:

PARAGRAPH_BREAK: A new paragraph

LINE_BREAK: Start a new line in the current paragraph.

HARD_HYPHEN: A fixed hyphenation character that hyphenation cannot remove.

SOFT_HYPHEN: Indicating a possible hyphenation point, visible in the document
only if actual hyphenation occurs at this point.

HARD_SPACE: A fixed space that can neither be stretched nor compressed by
justification.

The control characters are actually constants that can be inserted in your program
code by prepending com.sun.star.text.ControlCharacter. to the name of
the character to insert, as shown above in the short examples. The following code
segment illustrates the use of all control characters.

oCursor = oText.createTextCursor()
oCursor.gotoStart(FALSE)
oText.insertString(oCursor,"My first piece of Text",FALSE)
oText.insertControlCharacter(oCursor,_

com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,FALSE)
oText.insertString(oCursor,_
"second Line In first paragraph", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.LINE_BREAK,FALSE)
oText.insertString(oCursor,"Second paragraph", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, FALSE)
oText.insertString(oCursor,_
"First Line In 3rd paragraph,", FALSE)
oText.insertString(oCursor," a fixed hyphen", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.HARD_HYPHEN,FALSE)
oText.insertString(oCursor,", a soft hyphen,", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.SOFT_HYPHEN,FALSE)
oText.insertString(oCursor," And a fixed space", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.HARD_SPACE,FALSE)
oText.insertString(oCursor,"between two words", FALSE)
oText.insertControlCharacter(oCursor, _
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,FALSE)
oText.insertString(oCursor,"New page starts here",FALSE)
oCursor.gotoStartOfParagraph(TRUE)
oCursor.breakType = com.sun.star.style.BreakType.PAGE_BEFORE

54 StarOffice Programmer’s Tutorial ♦ May 2000

A page break is inserted at the end of this example. You may have noticed that there
is no control character provided for page breaks. Text can be used in different
contexts, for example in a paragraph or in the cell of a table. While the control
characters mentioned so far have reasonable uses even in a cell, a page break is
meaningful only in some circumstances (and not in a table cell). It can thus not be
inserted with insertControlCharacter().

There are two methods to force a page break in the text.

1. Set the PageDescName property of the paragraph to the name of the page style
you want the next page to use. This sets the paragraph’s breakType property to
PAGE_BEFORE automatically. If you want to remove this page break, you have to
set PageDescName to an empty string again.

2. Set the breakType property of the paragraph to PAGE_AFTER, PAGE_BOTH,
COLUMN_BEFORE, COLUMN_AFTER, or COLUMN_BOTH. In these cases, you can’t
specify a page style to use for several reasons. First, if you specify a column
break, a page format makes no sense. Second, if you use a page break that is not
PAGE_BEFORE, the page break would have to occur after the paragraph for which
you specify the page style to use with the next paragraph. This would make the
paragraph style quite incomprehensible.

As in insertString(), the last parameter of insertControlCharacter()
determines if the text in the current text range is replaced (TRUE) or not (FALSE).

4.3.5 Searching and replacing
We have shown you how you can replace text in a document by creating a spanning
cursor. This approach is fine as long as you can move to the text to be replaced with
the cursor. If you are working on a document that you didn’t create yourself, this is
generally not possible. In this case, you’ll have to search for the correct position first.
Search and replace descriptors are the objects you need to achieve this.

Using StarOffice API - Building blocks 55

Figure 4–7 Searching and replacing

oSearchDesc = oDocument.createSearchDescriptor
oSearchDesc.searchString="find"

This piece of code creates a SearchDescriptor and then sets the string to search
for to the word find. You have to start searching like this:

oFound = oDocument.findFirst(oSearchDesc)
Do While mFound
REM Do something With the Text

oFound = oDocument.findNext(oFound.End, aSearch)
Loop

findNext() returns the next range of text that contains the search string. It starts at
the text range specified in its first parameter. We use oFound.End here, which is the
end of the last text found. End is a property of the XTextRange() interface. Since
findNext() returns an XTextRange() interface, you can use all properties and
methods available with it. That makes it easy to change attributes. To change all
appearances of the word "Bauhaus" in a document so that it is displayed in the font
with the same name, you’d use something like this:

56 StarOffice Programmer’s Tutorial ♦ May 2000

oSearch = oDocument.createSearch
oSearch.searchString="Bauhaus"
oSearch.SearchWords = TRUE
oSearch.SearchCaseSensitive = TRUE
oFound = oDocument.findFirst(oSearch)
Do While NOT isNull(oFound)

oFound.charFontName="Bauhaus"
oFound = oDocument.findNext(oFound.End, oSearch)

Loop

Two additional properties of the search descriptor ensure that "Bauhaus" is changed
only when it appears on its own and when the letter case match exactly (i.e.
"bauhaus" would not be changed).

Instead of walking through the whole document with findNext(), you can use
findAll() to get a sequence of text ranges where the search string occurs:

oFound = oDocument.findAll(oSearch)
For n = 0 To oFound.Count - 1

REM Do something With the oFound.getByIndex(n)
Next n

This approach is not fundamentally different from the first one.

4.3.6 Using regular expressions
To find strings in a certain context, you should use regular expressions. We will not
explain them in detail here since the StarOffice documentation contains all necessary
information. Suppose that in a bibliography each entry starts with the title followed
by the author. You cannot search for only the lines in the document containing these
entries with a simple string, since there is no common word for all entries. However,
they share a common structure- each line starts with a number contained in brackets.
Using a regular expression, you can search for this structure. The following program
fragment exchanges title and author:

Dim oSearchDesc As Object, oCursor As Object
Dim oFoundAll As Object, oFound As Object
Dim nLen As Integer, n As Integer
Dim nEndAuthor As Integer
Dim nStartTitle As Integer, nEndTitle As Integer
Dim sAuthor As String, sTitle As String
Dim s As String, sRest As String

oSearchDesc = oDocument.createSearchDescriptor()
oSearchDesc.SearchString = "^\[[0-9]+\]"
oSearchDesc.SearchRegularExpression = TRUE
oFoundAll = oDocument.findAll(oSearchDesc)
For n = 0 To oFoundAll.Count - 1

oFound = oFoundAll(n)
REM Or: oFound=oFoundAll.getByIndex(n)
oCursor = oText.createTextCursorByRange(oFound)
oCursor.gotoNextWord(FALSE)
oCursor.gotoEndOfParagraph(TRUE)

Using StarOffice API - Building blocks 57

s = oCursor.String
nEndAuthor = InStr(1, s, ";") -1
nLen = nEndAuthor
sAuthor = Left(s, nLen)
nStartTitle = nEndAuthor + 2
nEndTitle = InStr(nStartTitle, s, ";") -1
nLen = nEndTitle - nStartTitle + 1
sTitle = Mid(s, nStartTitle, nLen)
nLen = Len(s) - nEndTitle
sRest = Right(s, nLen)
oCursor.String = sTitle + " " + sAuthor + sRest

Next n

After creating the search descriptor, its SearchString is set to ^\[[0-9]+\]. In
plain words this means: "Find all lines beginning with a left bracket. This bracket
must be followed by at least one digit and a closing bracket.". The caret (^) stands
for "beginning of the line", "[0-9]" denotes all digits, and the following plus sign
means "at least one". We’ll not go into more detail here, the StarOffice API Reference
Manual contains more information on regular expressions. The search descriptor’s
searchRegularExpression attribute must be set to TRUE to let it know that it
should not look for the literal string "^\[[0-9]+\]".

All lines matching the regular expression are then found with findAll(). It returns
an XTextRange() interface which is passed to createTextCursorByRange().
The new cursor is thus automatically positioned at the matching regular expression.
By moving it to the next word and then to the end of the paragraph, we span a text
range that contains the whole bibliography entry but the leading number. This string
is finally modified with some lines of pure StarBasic. They simply find the semicolons
separating the author and the title and re-assemble the string from these parts.

4.3.7 Inserting tables, frames, etc.
As mentioned in Section 4.3.1 “The structure of text documents” on page 47, a text
document can contain tables and other elements besides paragraphs of text. We’ll
show you how to insert tables and frames in your text document in this section.

A table is a special object that you can insert into a text document. You can think of
it as a simple spreadsheet - a very simple one, in fact. First of all, you will see how to
insert a simple table:

Dim oTable As Object

oCursor = oText.createTextCursor()
oCursor.gotoStart(FALSE)
oTable = oDocument.createInstance("com.sun.star.text.TextTable")
oTable.initialize(5,9)
oText.insertTextContent(oCursor, oTable, FALSE)

The table is created by calling createInstance() and then initialized to contain
five rows and nine columns. It is then placed in the current document with a call to

58 StarOffice Programmer’s Tutorial ♦ May 2000

insertTextContent(). This methods expects a textCursor as its first element.
In our example, this cursor is simply placed at the beginning of the document.

Your document now contains an empty table. Since you would probably want to
place text or other things inside this table, we’ll show you how to do this next:

Dim oTableCursor As Object
Dim sCellName As String
Dim oCell As Object

oTableCursor = oTable.createCursorByCellName(oTable.CellNames(0))
oTableCursor.gotoStart(FALSE)

Dim mTableHeaders(8) As String

mTableHeaders(0) = "Field"
mTableHeaders(1) = "Format"
mTableHeaders(2) = "AutoIncrement"
mTableHeaders(3) = "Descending"
mTableHeaders(4) = "PartOfPrimaryKey"
mTableHeaders(5) = "Required"
mTableHeaders(6) = "Scale"
mTableHeaders(7) = "Size"
mTableHeaders(8) = "Type"
For n = 0 To 8

sCellName = oTableCursor.getRangeName()
oCell = oTable.getCellByName(sCellName)
oCell.String=mTableHeaders(n)
oTableCursor.goRight(1,FALSE)

Next n

To move around in a table, you have to create a tableCursor first. The sample
code above uses the method createCursorByCellName() for this and then
moves the cursor to the top left cell of the table. After initializing the array
tableHeaders with the column headers of the table, it moves the cursor to each of
the cells in the first row with goRight(). The content of the cell is then set by
assigning to its String property.

If you want to insert numbers into a table, you’ll probably not want them to be
displayed left justified, which is the default for all cells. To change the justification
for a cell depending on its content, you can use this code snippet:

s=oCell.String
If IsNumeric(s) Then

oCellCursor = oCell.createTextCursor()
oCellCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.RIGHT

End If

We are using a text cursor here to hard format a cell if it contains a number.
Alternatively, you might define a special style for numbers and assign it to the cell:

oCellCursor.paraStyle="myNumberStyle"

Using StarOffice API - Building blocks 59

4.3.7.1 Inserting a frame
Frames can serve several purposes. You can use them to display graphics in a text
document, to attach an icon to a certain word, and frames can be used to implement
columns, because you can link them together. If the text overflows the first frame, it
is automatically continued in the second one. We’ll first show you how to create a
simple frame that contains text:

Dim oFrame As Object
oCursor = oText.createTextCursor()
oText.insertString(oCursor,_
"First paragraph", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, _
FALSE)
oText.insertString(oCursor,_
"Second paragraph" , FALSE)
oCursor.gotoStart(FALSE)
oCursor.gotoNextWord(FALSE)
oFrame = oDocument.createInstance(_
"com.sun.star.text.TextFrame")
Dim aSize As New com.sun.star.awt.Size

aSize.width = 2000
aSize.height = 1000
oFrame.Size = aSize
oFrame.AnchorType = _
com.sun.star.text.TextContentAnchorType.AS_CHARACTER
oFrame.TopMargin = 0
oFrame.BottomMargin = 0
oFrame.LeftMargin = 0
oFrame.RightMargin = 0
oFrame.BorderDistance = 0
oFrame.HoriOrient = _
com.sun.star.text.HoriOrientation.NONE
oFrame.VertOrient = _
com.sun.star.text.VertOrientation.LINE_TOP
oText.insertTextContent(oCursor, oFrame, FALSE)

Here we begin with two simple text paragraphs and position the text cursor at the
beginning of the first paragraph. Then the frame is created and some properties are
set to reasonable values. In particular, the anchorType is specified as
AS_CHARACTER, meaning that the frame is treated as if it were a character.
Consequently, the line spacing is adjusted if the frame grows vertically. Another
anchorType value is AT_CHARACTER, which simply anchors the frame at a specific
character. The other properties ensure that the new frame is properly placed with
respect to the text line.

oCursor = oFrame.createTextCursor
oCursor.charWeight = com.sun.star.awt.FontWeight.BOLD
oCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER
oFrame.insertString(oCursor, "New", TRUE)

These four lines insert the centered word New in bold characters into the frame. The
important thing here is to create a text cursor at the frame and to use the
insertString() method of the frame as well.

60 StarOffice Programmer’s Tutorial ♦ May 2000

4.3.7.2 Inserting textfields
The best known applications for textfields are probably the date and page numbers
automatically inserted in a document. We’ll show you how to insert the current date
in a document first:

Dim oDateTime As Object

oCursor = oText.createTextCursor()
oText.insertString(oCursor,"Today is the ", FALSE)
oDateTime = oDocument.createInstance("com.sun.star.text.TextField.DateTime")
oDateTime.Fix = FALSE
oText.insertTextContent(oCursor,oDateTime,FALSE)
oText.insertString(oCursor," ",FALSE)

This code creates a single line showing the words Today is the followed by the
current date. You reate the text field with createInstance() and insert it at the
cursor position with insertTextContent(). The only property set here ensures
that the date is not fixed. If you save the document and open it two days later, it will
show the actual date.

The current page number is most helpful in the header or footer of a page. In the
next sample, you’ll see how to insert it into the footer of a page style.

Dim oStyleFamlies As Object
Dim oPageStyles As Object, oStdPage As Object
Dim oFooterLeft As Object, oFooterCursor As Object
Dim oFooterText As Object
Dim oPageNumber As Object

oPageNumber = oDocument.createInstance(_
"com.sun.star.text.TextField.PageNumber")
oPageNumber.numberingType = _
com.sun.star.style.NumberingType.ARABIC
oStyleFamilies = oDocument.StyleFamilies
oPageStyles = oStyleFamilies.getByName("PageStyles")
oStdPage = oPageStyles("Standard")
oStdPage.FooterOn = TRUE
oFooterLeft = oStdPage.FooterTextLeft
oFooterText = oFooterLeft.Text
oFooterCursor = oFooterText.createTextCursor()
oFooterText.insertString(oFooterCursor,_
"Page ", FALSE)
oFooterText.insertTextContent(oFooterCursor, _
oPageNumber, FALSE)

As before, the text field for the page number is created with createInstance().
The footer is then turned on for the page style Standard - you must do that before
you can access the style’s FooterTextLeft property. Since this is the xText()
interface of the footer, it provides all the well known methods to insert text. We use
insertString() to put the word Page before the number, which is added to the
footer with insertTextContent().

Using StarOffice API - Building blocks 61

Field name Meaning

PageNumber The current page number

PageCount Total number of pages

FileName Name of the document

DateTime A date, possibly automatically changed to
the current date whenever the document is
opened.

SetExpression Definition of a formula or variable

GetExpression Value of a formula or variable

Author The author of the document, possibly
updated whenever the document is
modified.

Chapter Name and/or number of the current chapter.

GetReference Crossreference entry

ConditionalText Text inserted depending on a condition.

Input An entry field

HiddenParagraph A paragraph that is only visible when a
condition yields true

DocumentInfo The information available for this document

TemplateName Name of the template file used for this
document

Database Complete name of a field in a database.

DatabaseName Name of a database and a table.

ParagraphCount Total number of paragraphs

WordCount Total number of words

CharacterCount Total number of characters

TableCount Total number of tables

GraphicObjectCount Total number of graphic objects

EmbeddedObjectCount Total number of embedded objects

4.3.7.3 Inserting graphics
You can insert graphic objects as well as frames, tables and text fields. Since this
requires another StarOffice API module besides Text(), the process is a bit more
complicated. Note that the function createRect() is defined later in Section 4.5.2
“Making things easier” on page 90

62 StarOffice Programmer’s Tutorial ♦ May 2000

Dim oRectangleShape As Object

oCursor = oText.createTextCursor()
oText.insertString(oCursor,"First paragraph", FALSE)
oText.insertControlCharacter(oCursor,_
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, _
FALSE)
oText.insertString(oCursor,"Second paragraph" , FALSE)
oCursor.gotoStart(FALSE)
oCursor.gotoNextWord(FALSE)
oRectangleShape = createRect(1000,1000,2000,500)
oRectangleShape.TextRange = oCursor.start
oRectangleShape.fillColor = RGB(255,0,0)
oRectangleShape.anchorType = _
com.sun.star.text.TextContentAnchorType.AS_CHARACTER
oRectangleShape.HoriOrient = _
com.sun.star.text.HoriOrientation.NONE
oRectangleShape.VertOrient = _
com.sun.star.text.VertOrientation.LINE_TOP
oText.insertTextContent(oCursor,oRectangleShape,FALSE)

As before, we create two dummy paragraphs and position the text cursor at the
beginning of the first word paragraph. The rectangle is then created using a function
which will be introduced later (see Section 4.5.2 “Making things easier” on page 90).
The differences begin now: We could insert tables, frames and text fields directly
using insertTextContent(). The rectangle, however, is created on the DrawPage
associated with the current page of the text document. To create it, you have to
provide its position and dimensions in 100ths of a millimeter. Since you can’t deduce
the position from your text document, you simply specify a dummy position and
link the graphic object to the correct position by setting its TextRange property to
the start position of oCursor. The rectangle is then made visible and attached to the
cursor position by inserting it as before with the insertTextContent() method.

4.3.8 Locating text content
As you have seen in the preceding section, text documents can contain other content
besides normal text. If you want to modify this content, you have to be able to locate
it first. This is fairly easy, because StarOffice API’s text module contains
appropriate interfaces for each type of content. For example, to get an array of all
tables in a document, you could use this:

Dim oTextTables As Object
Dim oTable As Object
Dim n As Integer

oTextTables = oDocument.getTextTables()
For n = 0 to oTextTables.count - 1

oTable = oTextTables(n)
REM Do something with oTable

Next n

Using StarOffice API - Building blocks 63

To get the frames, you use getTextFrames(), for text fields you employ
getTextFields(), and for graphics you call getGraphicObjects(). Once you
have found the content you are looking for, either by index or by name access, you
can inquire and change its properties.

4.4 Sheet
Sheet is the module that contains spreadsheet services. It is used like the text
service, since it needs a document to work with:

Global oDesktop As Object
Global oDocument As Object

Sub sheetdoc_init
Dim mNoArgs() REM Empty Sequence
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "private:factory/scalc"
REM Or: sUrl = "file:///home/testuser/Office52/work/table.sdc"
oDocument = oDesktop.LoadComponentFromURL(sUrl,"_blank",0,mNoArgs)

End Sub

In the following examples, we will assume you have opened the document as
described. You’ll learn how to address cells and ranges of cells, how to navigate
through sheets, and how to draw a chart from sheet data.

4.4.1 Using Cells and Ranges
Most spreadsheet documents contain several sheets. When you create an empty one,
it always comes with three sheets. The sheets consist of cells, each of which can be
empty or contain text, a value, or a formula. Every cell has an address which
contains the number of the sheet, the row, and the column number.

64 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–8 Structure of a SpreadsheetDocument

Rows and columns can be specified numerically, starting with 0, or as strings. In the
latter case, the cell in the upper left corner of a sheet has the address A1. The next
cell to the right is named A2, the one below is B1. A rectangular region of cells is

Using StarOffice API - Building blocks 65

called a range. To address cells or ranges of cells in a spreadsheet, you first must
select the sheet before you can do anything else.

oSheet1 = oDocument.Sheets(0)

As usual, the first sheet is numbered zero. If you don’t know how many sheets your
document has, use count():

nSheetCount = oDocument.Sheets.Count

A single cell is adressed like this:

Function GetCell (oDocument As Object, _
nSheet As Long, nColumn As Long ,_
nRow As Long) As com.sun.star.table.XCell

Dim oSheets As Object
Dim oSheet As Object

oSheets = oDocument.Sheets()
oSheet = oSheets.getByIndex(nSheet)
GetCell = oSheet.getCellByPosition (nColumn , nRow)

End Function

This function returns an XCell interface of the SheetCell service. A range of cells
can be specified like this:

sTopLeft = "b2"
sBottomRight = "d8"
oCellRange = oSheet1.getCellRangeByName(sTopLeft + _
":" + sBottomRight)

Alternatively, you can use a function to obtain a cell range:

Function GetCellRange (oDocument As Object, _
nSheet As Long, _

nCol1 As Long , nRow1 As Long, _
nCol2 As Long , nRow2 As Long) _
As com.sun.star.table.XCellRange

Dim nLeft As Long
Dim nRight As Long
Dim nTop As Long
Dim nBottom As Long
Dim oSheets As Object
Dim oSheet As Object

nLeft = iif(nCol1 < nCol2, nCol1, nCol2)
nRight = iif(nCol1 < nCol2, nCol2, nCol1)
nTop = iif(nRow1 < nRow2, nRow1, nRow2)
nBottom = iif(nRow1 < nRow2, nRow2, nRow1)
oSheets = oDocument.Sheets()
oSheet = oSheets.getByIndex(nSheet)
GetCellRange = _
oSheet.getCellRangeByPosition(nLeft, nTop, nRight, nBottom)

End Function

66 StarOffice Programmer’s Tutorial ♦ May 2000

This function accepts the corners of the range in any order, it determines the top, left,
bottom, and right cells to pass to getCellRangeByPosition().

If you have a range of cells, you might want to work with a single cell. This can be
achieved with getCellByPosition():

oCell = oCellRange.getCellByPosition(0,0)

would return the cell at the top left corner of the range. All values passed to
getCellByPosition() are relative to the range. To get the right bottom cell, you’d
use

nCols = oCellRange.Columns.Count
nRows = oCellRange.Rows.Count
oCell = oCellRange.getCellByPosition(nCols - 1, nRows -1)

Note that we subtract 1 from the number of rows and columns here, because the
numbering starts at zero.

4.4.1.1 Calculations
You can perform some simple calculations on ranges without using a formula.

Using StarOffice API - Building blocks 67

Figure 4–9 Calculations using XSheetOperation interface

The following sample code illustrates this as well as the way to enter data into cells.
It uses the function getCellRange() defined above.

68 StarOffice Programmer’s Tutorial ♦ May 2000

Dim oCell As Object, oRange As Object
Dim nCols As Long, nRows As Long
Dim oCellSum As Object, oCellAvg As Object
Dim eSumFunc As Long, eAvgFunc As Long
Dim nSum As Long, nAvg As Long
Dim n As Long

oRange = GetCellRange(oDocument,0, 1, 0, 1, 5)
nCols = oRange.Columns.Count
nRows = oRange.Rows.Count
For n = 0 To nRows-1

oCell = oRange.getCellByPosition(0,n)
oCell.Value = n

Next n
eSumFunc = _
com.sun.star.sheet.GeneralFunction.SUM
eAvgFunc = _
com.sun.star.sheet.GeneralFunction.AVERAGE
nSum = oRange.computeFunction(eSumFunc)
nAvg = oRange.computeFunction(eAvgFunc)
oCell = GetCell(oDocument,0,0,nRows)
oCell.String = "Sum"
oCell = GetCell(oDocument,0,0,nRows +1)
oCell.String = "Average"
oCellSum = GetCell(oDocument,0,1,nRows)
oCellSum.Value = nSum
oCellAvg = GetCell(oDocument,0,1,nRows + 1)
oCellAvg.Value = nAvg

This program fills all cells in the range B1 through B6 with the numbers 0 through 5
(see for loop). It then computes the sum and the average over these values. Cells A7
and A8 are labeled with Sum and Average, respectively and the calculated values
are then written into the cells B7 and B8. Although the values are as correct as they
can be, this calculation method has a serious disadvantage: Whenever one of the
values used changes, you must recalculate the sum and average yourself. Since this
is precisely the job of a spreadsheet, you should use a formula for this purpose:

oCellAvg.Formula = "=SUM(B1:B6)/"+ CStr(nRows)

This line changes the content of cell B7 so that it contains a formula instead of the
value.

To summarize: To set the content of a cell to text, you use the String property, to
enter a value in a cell, you set the Value property. If you want to put a formula in a
cell, you assign it (including the equals sign) to the Formula property. Note that
function names must be English if you use the Formula property. To use functions
in your local language, you must use the FormulaLocal property. If you want to
know what a cell contains, you can retrieve its Type property:

Sub Printinfo (oCell As Object)
Dim eType as Long

eType = oCell.Type
If eType = com.sun.star.table.CellContentType.VALUE Then
Print CStr(oCell.Value)

Elseif eType = com.sun.star.table.CellContentType.TEXT Then

Using StarOffice API - Building blocks 69

Print oCell.String
Elseif eType <> com.sun.star.table.CellContentType.EMPTY Then
Print oCell.Formula + "..." + oCell.FormulaLocal

Else
Print "Cell Is empty"

End If
End Sub

This piece of code simply outputs the content of a cell as a string. If it is a formula, it
is shown in the English and the local variant.

4.4.2 Formatting cells
One way to format cells are styles. With them you can specify how something is
formatted. We are not going to explain this here in more detail, you can use the
techniques explained in Section 4.1 “Styles” on page 31. The more interesting
formatting tasks in stylesheets are those dealing with the representation of cell
content - how do you ensure that a value is shown as percentage or as a date? The
following examples will show you how to influence what is displayed.

70 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–10 Formatting cells using NumberFormatter service

The key concept here is the NumberFormatter() interface. It provides access to all
formats available in the sheet cells and permits you to define new formats as well.
StarOffice API comes with a huge collection of predefined number formats from

Using StarOffice API - Building blocks 71

which you can choose. We will first show you how to find an appropriate format
and then how to define your own number format.

Predefined formats can be accessed by language and category. As long as you don’t
want to use a language different from the default, you should always use 0 as value
for the language parameter.

Dim oFormats As Object
Dim mKeys As Variant
Dim oLocale As Object

oFormats = oDocument.NumberFormats
mKeys = oFormats.queryKeys(0, oLocale, FALSE)

These two lines return the list of all available formats, which is usually more then
you really want. To get just the currency formats defined for your language, you
could use

oFormats = oDocument.NumberFormats
mKeys = oFormats.queryKeys(_
com.sun.star.util.NumberFormat.CURRENCY, oLocale, FALSE)

mKeys is now a sequence of numbers, each of which addresses a particular format
definition. To find a format which displays all negative amounts in red, inserts a
separator after every third digit ("thousands separator"), and shows no leading zeros,
you could use the following lines of code:

Dim nFoundFormat As Long
Dim nKey As Long
Dim mProperties As Variant
Dim vProperty As Variant
Dim nI As Long, nJ As Long
Dim nLZ As Long
Dim bNR As Boolean
Dim bTS As Boolean
Dim sNewFormat As String
nFoundFormat = -1
For nI = LBound(mKeys) To UBound(mKeys)

nKey = mKeys(nI)
mProperties = oFormats.getByKey(nKey).getPropertyValues()
For nJ = LBound(mProperties) To UBound(mProperties)

vProperty = mProperties(nJ)
If vProperty.Name = "LeadingZeros" Then

nLZ = vProperty.Value
End If
If vProperty.Name = "NegativeRed" Then

bNR = vProperty.Value
End If
If vProperty.Name = "ThousandsSeparator" Then

bTS = vProperty.Value
End If

Next nJ
If nLZ = 0 And bNR = TRUE And bTS = TRUE Then
nFoundFormat = nKey

End If
Next nI

72 StarOffice Programmer’s Tutorial ♦ May 2000

If nFoundFormat < 0 Then
sNewFormat = oFormats.generateFormat(mKeys(0), _
oLocale, TRUE,TRUE, 2, 0)

nKey = oFormats.queryKey(sNewFormat, oLocale, TRUE)
If nKey=-1 Then
nKey = oFormats.addNew(sNewFormat, oLocale)

End If
nFoundFormat = nKey

End If

First of all, we initialize the variable nFoundFormat to -1. This is never a valid
format key. If the value is still -1 after we have searched through all formats, we
know that none of them suited our needs. We then loop over the keys array. The
method getByKey() returns an array of properties associated with each format.
The next loop iterates over these properties and copies the values of
LeadingZeros, NegativeRed, and ThousandsSeparator in the variables nLZ,
bNR, and bTS, respectively. If these variables have the desired values after the loop
is terminated, the current format’s key is saved in nFoundFormat. When we have
looked at all currency formats, we check whether nFoundFormat is positive. If not,
there was no matching format found and we have to define one ourselves. The
method generateFormat() takes care of the next most important step. Despite its
name, it doesn’t generate a new format. Instead, it translates a format definition into
a format string. We pass in all the attributes we want the new format to have as well
as the key of a base format from which it inherits all the non-specified attributes.
We can then use the format string returned by generateFormat() to ask
queryKey() for a format which matches the string. If it returns -1, no such format
exists and we add a new one by passing the format string to addNew(). The next
few lines will show you how to apply the new format:

Dim oRange As Object
Dim oCell As Object

oRange = oDocument.Sheets(0).getCellRangeByPosition(0,0,0,2)
oRange.numberformat = nFoundFormat
oCell = oRange.getCellByPosition(0,0)
oCell.Value = 10000.2693
oCell = oRange.getCellByPosition(0,1)
oCell.Value = 0.3
oCell = oRange.getCellByPosition(0,2)
oCell.Value = -20

This code first creates a range spanning the top three cells in the first row. It then sets
the numberFormat property of these cells to the key of the just found or created
format. Finally, three numbers are inserted in the three cells. The first illustrates the
insertion of a thousands separator, the second one will show up without a leading
zero (which is not particularly useful for a currency format), and the last one will be
displayed in red.

Using StarOffice API - Building blocks 73

4.4.3 Drawing a Chart from Data
StarOffice can produce diagrams (called "charts") from data in a spread sheet. The
details of charts are handled by a different module, com.sun.star.chart. Charts
are "embedded" into spreadsheets and are accessible through a named collection
from the spreadsheet.

74 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–11 Drawing a chart diagram from spreadsheet data

Three steps are required to create a chart from spreadsheet data:

1. Define the data to display in the chart and the rectangular area in the sheet where
it is to be drawn.

Using StarOffice API - Building blocks 75

2. Add the chart to the named collection.

3. Set all chart properties to the desired values.

In its most simple form, a chart takes just a rectangular region of the sheet containing
the data and another rectangle defining the size of the chart. For the following
examples, we will assume that the upper left corner of the first sheet contains this
data:

76 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–12 Structure of a ChartDocument

Year Prod. A Prod. B

2000 15 15

2001 8 10

2002 5 20

Using StarOffice API - Building blocks 77

2003 10 15

2004 20 25

We will assume that the numbers are sales for two products.

4.4.3.1 Creating barcharts
Global aRect As New com.sun.star.awt.Rectangle
Global mRangeAddress(0) As New com.sun.star.table.CellRangeAddress
Global oCharts As Object
Sub chart_init

sheetdoc_init()
aRect.X = 8000
aRect.Y = 1000
aRect.Width = 10000
aRect.Height = 10000
mRangeAddress(0).Sheet = 0
mRangeAddress(0).StartColumn = 0
mRangeAddress(0).StartRow = 0
mRangeAddress(0).EndColumn = 2
mRangeAddress(0).EndRow = 5
oCharts = oDocument.Sheets(0).Charts

End Sub

Sub chart1_sample
chart_init()
oCharts.addNewByName("BarChart",aRect,mRangeAddress(),TRUE, TRUE)

End Sub

The rect used in this example is the area on the physical page where the diagram is
to be drawn. Its position and size are given in 100ths of a millimeter. The rectangle
is thus positioned eight centimeters from the left and one centimeter from the upper
margin, it is 10 centimeters high and wide. There is no direct relationship between
the rectangle in which the diagram is drawn and the position of the cells in the sheet.

The data used to draw the chart is found in the range specified by rangeAddress.
It starts at the upper left corner of the sheet (cell A1) and extends to the cell in the
third column, sixth row (C6). To indicate that the first row and column of this range
contain the labeling for the chart, the last two parameters of addNewByName() are
set to TRUE.

78 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–13 BarChart sample 1

This example creates a bar diagram interpreting the table rows as the data pairs to
plot. Therefore, you see two groups of bars, one for each product. Every group
contains one bar for each of the years 2000 through 2004. To show the two products
side by side for each year you must tell StarOffice API to interpret the data by
columns:

Sub chart2_sample
chart_init()
oCharts.addNewByName("BarChart",aRect,mRangeAddress(),TRUE, TRUE)

Dim oChart As Object

oChart = oCharts.getByName("BarChart").embeddedObject
oChart.diagram.DataRowSource = com.sun.star.chart.ChartDataRowSource.COLUMNS

End Sub

Using StarOffice API - Building blocks 79

Figure 4–14 BarChart sample 2

Setting the DataRowSource property to
com.sun.star.chart.ChartDataRowSource.COLUMNS is all that is needed to
change the chart. Note that you must do that after you have added the new chart
with addNewByName().

4.4.3.2 Creating linecharts
Although a barchart illustrates the development of the two products over the years, a
line diagram would show the trends more clearly. To create a line diagram instead of
a bar chart, you can use these lines:

Sub chart3_sample
Dim oChart As Object

chart_init()
oCharts.addNewByName("LineDiagram",aRect,mRangeAddress(),TRUE, TRUE)
oChart = oCharts.getByName("LineDiagram").embeddedObject
oChart.diagram =_
oChart.createInstance("com.sun.star.chart.LineDiagram")
oChart.diagram.DataRowSource = com.sun.star.chart.ChartDataRowSource.COLUMNS

End Sub

80 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–15 LineChart sample

This chart displays one line for each product. You can thus clearly see the overall
tendency and the sharp fall for product A in 2002.

4.4.3.3 Creating pie charts
Suppose A and B were the only products of a company and you wanted to see how
each of them contributed to the total revenues in every year. One way to visualize
this is to use pie charts like this:

Sub chart4_sample
Dim oCell As Object
Dim sChartName As String
Dim sYear As String
Dim n As Long
Dim oRange As Object
Dim oChart As Object
Dim mRangeAddress(1) As New com.sun.star.table.CellRangeAddress
Dim aRect As New com.sun.star.awt.Rectangle

REM see section "Importing-other-formats"
REM import1_sample()

aRect.X = 8000

Using StarOffice API - Building blocks 81

aRect.Y = 1000
aRect.Width = 3000
aRect.Height = 3000
mRangeAddress(0).Sheet = 0
mRangeAddress(0).StartColumn = 0
mRangeAddress(0).StartRow = 0
mRangeAddress(0).EndColumn = 2
mRangeAddress(0).EndRow = 0
oRange = GetCellRange(oDocument,0, 0, 1, 0, 5)
For n = 0 To 4

oCell = oRange.getCellByPosition(0,n)
sYear = CStr(oCell.value)
mRangeAddress(1).Sheet = 0
mRangeAddress(1).StartColumn = 0
mRangeAddress(1).StartRow = n + 1
mRangeAddress(1).EndColumn = 2
mRangeAddress(1).EndRow = n +1
oCharts = oDocument.Sheets(0).Charts
sChartName = "PieChart" + sYear
oCharts.addNewByName(sChartName,_
aRect,mRangeAddress(),TRUE, TRUE)

oChart = oCharts.getByName(sChartName).EmbeddedObject
oChart.diagram = _
oChart.createInstance("com.sun.star.chart.PieDiagram")

oChart.Title.String = sYear
aRect.Y = aRect.Y + 4000

Next n
End Sub

This gives you one row of pie charts to the right side of the table - unless you have
changed the default table settings. In this case, the charts may well end up obscuring
part or all of your table. The reason for this is that we are using a fixed starting
point (8000/1000) for the first chart and draw every other chart just below the
preceding one.

The sample code above illustrates one thing we have not mentioned before: Your
data doesn’t have to be contained in consecutive rows or columns. As you can see
above, the second element of rangeAddress changes for each pie, because we need
one pie per row. The first element of rangeAddress remains the same, because it
contains the strings for the legend.

To make chart placement more reasonable, you should figure out the dimensions of
your table and decide on the position of your chart depending on them. To illustrate
this, we will use the same data as before and decide on the chart placement based on
the table’s dimension.

REM ... same code As before
oRange = GetCellRange(oDocument,0,0,0,2,5)
nTableWidth = oRange.Size.Width + oRange.Position.X
nPieRadius = 1500
aRect.X = oRange.Position.X
aRect.Y = oRange.Position.Y + oRange.Size.Height * 1.1
aRect.Width = nPieRadius * 2
aRect.Height = nPieRadius * 2

82 StarOffice Programmer’s Tutorial ♦ May 2000

After specifying a cell range, we use its Position and Size properties to specify
the position for the first pie chart. It is placed so that its left margin coincides with
the table range and its top margin is just a bit below the last cell. The variable
pieRadius is used to make the following code more legible.

If aRect.X + 3500 + nPieRadius*2 > nTableWidth Then
aRect.X = 0
aRect.Y = rect.Y + 3500

Else
aRect.X = rect.X + 3500

End If

Figure 4–16 PieChart sample

These lines make sure that the next pie is positioned to the right of the previous one
only if this would not exceed the width of the table. If it does, the chart is placed
flush at the left margin under the last row of charts. You can use a method like this
to place your charts near the table they belong to.

Using StarOffice API - Building blocks 83

4.5 Drawing
StarOffice contains a module to create vector graphics (lines, rectangles, circles etc.).
These drawings can then be included in other documents like text.

84 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 4–17 Structure of DrawingDocument

In this section we’ll show you how to create graphics, how to group graphics objects
and how to change their attributes.

Using StarOffice API - Building blocks 85

Figure 4–18 Shapes

Drawing is handled by a service that works only in documents. You have thus first
to open an existing document or to create a new one like this.

Global oDesktop As Object
Global oDocument As Object
Global oPage As Object
Sub drawdoc_init

Dim mNoArgs()
Dim sUrl As String

oDesktop = createUnoService("com.sun.star.frame.Desktop")
sUrl = "private:factory/sdraw"
REM Or: sUrl = "file:///home/testuser/office52/work/image.sdd"
oDocument = oDesktop.LoadComponentFromURL(sUrl,_

"_blank",0,mNoArgs())
oPage = oDocument.drawPages(0)

End Sub

Note that the first URL creates a new document, while the second one (after the "or"
comment) opens an existing document. oDocument now provides the
XDrawPages() interface which in turn is the main entry point for all drawing
functionality. We use the first drawing page here and assume in the following
examples that you have opened or created a document as described.

The draw module differs from other StarOffice API modules we have seen so far in
that in can actually draw on any type of document. It is therefore not necessary to
create an sdraw document or open an sdd file. You could as well create a text
document or open a spreadsheet. The important point is that you get the document’s
drawing page, because all graphics objects are attached to it.

The main concepts in the drawing module are the drawing page and shapes. Shapes
are the actual graphic objects which you see. They are always attached to a drawing
page which is responsible for displaying them. A shape remains invisible as long as
it is not added to a drawing page.

86 StarOffice Programmer’s Tutorial ♦ May 2000

4.5.1 Creating simple shapes
Shapes are rectangles, circles etc. They make heavy use of some basic structures like
com.sun.star.awt.Point and com.sun.star.awt.Size to specify coordinates
and dimensions. All coordinates and dimensions are given in 100ths of a millimeter.

Using StarOffice API - Building blocks 87

Figure 4–19 Creating simple shapes

Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size

88 StarOffice Programmer’s Tutorial ♦ May 2000

aPoint.x = 1000
aPoint.y = 1000
aSize.Width = 10000
aSize.Height = 10000

Dim oRectangleShape As Object

oRectangleShape = oDocument.createInstance("com.sun.star.drawing.RectangleShape")
oRectangleShape.Size = aSize
oRectangleShape.Position = aPoint
oRectangleShape.FillColor = RGB(255,0,0)
oPage.add(oRectangleShape)

Dim oEllipseShape As Object

oEllipseShape = oDocument.createInstance("com.sun.star.drawing.EllipseShape")
oEllipseShape.Position = aPoint
oEllipseShape.Size = aSize
oEllipseShape.FillColor = RGB(0,255,0)
oPage.add(oEllipseShape)

Dim oTextShape As Object
oTextShape = oDocument.createInstance("com.sun.star.drawing.TextShape")
aPoint.x = 11000
aPoint.y = 11000
oTextShape.Position = aPoint
oTextShape.Size=aSize
oPage.add(oTextShape)
oTextShape.String="Hello World"

This example creates a red square whose side is 10 centimeters long (aSize). Its
upper left corner is one centimeter right and down from the upper left corner of the
page (aPoint). The same values are used for the green circle. In general, the Size
property of a shape defines the bounding box in which it is contained. The
Position property specifies the position of the bounding box’s upper left corner on
the page. Coordinates on a page start at the upper left with (0,0) and extend to the
right and the bottom.

You can learn several important points from the preceding example:

1. All shapes are first created by createInstance() which expects the name of
the shape as its parameter. Then all properties are set, and finally the shapes are
made visible with a call to the draw page’s add() method.

2. StarOffice API does not provide a circle shape. Instead, you use an ellipse with a
size property that specifies a square.

3. The string of a text shape can be set only after it has been added to the page. In
general, you can only set those properties that are provided directly by the service
ShapeDescriptor and indirectly by the interface XShape.

If you want to change the visual appearance of a shape after you have created it, you
simply modify the corresponding property. This works as long as you didn’t add this
shape to a group. Shapes forming a group can be modified separately using an index
access method. You can apply geometric transformations to the whole group.

Using StarOffice API - Building blocks 89

4.5.2 Making things easier
To facilitate working with the drawing Module, we’ll present some functions which
you can use in your programs to create objects. Each function returns the object it
has created, it expects the current document as its first parameter. We’ll not explain
these functions further, they just do what the name implies.

Function createSquare (nX As Long, nY As Long,_
nWidth As Long) As Object

REM Creates a square with upper left
REM at (nX,nY) with sides = nWidth

createSquare = createRect(nX,nY,nWidth,nWidth)
End Function

Function createRect (nX As Long, nY As Long,_
nWidth As Long,_
nHeight) As Object

REM Creates a rectangle with upper left
REM at (nX,nY), width = nWidth, height = nHeight

Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size
Dim oRectangleShape As Object

aPoint.X = nX
aPoint.Y = nY
aSize.Width = nWidth
aSize.Height = nHeight
oRectangleShape = oDocument.createInstance("com.sun.star.drawing.RectangleShape")
oRectangleShape.Size = aSize
oRectangleShape.Position = aPoint
createRect = oRectangleShape

End Function

Function createCircle (nX As Long, nY As Long,_
nRadius As Long) As Object

REM Creates a circle with center
REM at (nX,nY), radius = nRadius

Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size
Dim oCircle As Object

aPoint.X = nX - nRadius
aPoint.X = nY - nRadius
aSize.Width = nRadius * 2
aSize.Height = nRadius * 2
oCircle = oDocument.createInstance("com.sun.star.drawing.EllipseShape")
oCircle.Size = aSize
oCircle.Position = aPoint
createCircle = oCircle

End Function

4.5.3 Grouping objects
Several shapes can be assembled in one group. This allows to move, scale, rotate etc.
a set of shapes in one step. Furthermore, it ensures that shapes belonging together

90 StarOffice Programmer’s Tutorial ♦ May 2000

are manipulated together. The following sample code uses the functions introduced
in the last section.

Dim oSquare1 As Object, oSquare2 As Object

oSquare1 = createSquare(1000, 1000, 3000)
oSquare1.FillColor = RGB(255,128,128) ’ light red
oPage.add(oSquare1)
oSquare2 = createSquare(1000, 7000, 3000)
oSquare2.FillColor = RGB(255,64,64) ’ darker red
oPage.add(oSquare2)

Dim oCircle As Object

oCircle = createCircle(2500, 8500, 1500)
oCircle.FillColor = RGB(0,255,0)
oPage.add(oCircle)

Dim oShapes As Object

oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
oShapes.add(oSquare2)
oShapes.add(oCircle)

Dim oGroup As Object

oGroup = oPage.group(oShapes)

Dim aNewPos As New com.sun.star.awt.Point
Dim nHeight As Long
Dim nWidth As Long

nHeight = oPage.Height
nWidth = oPage.Width
aNewPos.X = nWidth / 2
aNewPos.Y = nHeight / 2
nHeight = oGroup.Size.Height
nWidth = oGroup.Size.Width
aNewPos.X = aNewPos.X - nWidth/2
aNewPos.Y = aNewPos.Y - nHeight/2
oGroup.Position = aNewPos

As you can see, you have to create and add() shapes before you can group them.
The example draws two squares (one filled with a light red and the other one filled
with a dark red) and one circle. The circle is drawn on top of the bottom square.
These two shapes are then merged into one group in three steps:

1. Create a new shape collection oGroupwith createUnoService()

2. Add existing shapes to this collection with aGroup.add()

3. Merge all shapes in the collection with group()

After you have created the group, you can no longer change the visual appearance of
the shapes it consists of. That means that oCircle.fillColor=RGB(0,0,255)()
will not change the circle’s color to blue after you have added it to the shape
collection.

Using StarOffice API - Building blocks 91

The last lines of the example are just there to prove that the circle and the bottom
square do actually form a group: They change the position of the group so that it’s
moved to the center of the page. This part of the code shows you how to determine
the current position and size of a group.

4.5.4 Creating sophisticated shapes
There are many pictures you can draw with rectangles, circles and squares. And
there are many more where you need other shapes, for example lines, triangles or
curves. We’ll show you how to produce some of these shapes here, but the following
samples are by no means complete.

4.5.4.1 Creating triangles
Let’s start with a simple triangle. This is a special form of what StarOffice API calls
"PolyPolygonShape". A PolyPolygonShape is a shape that consists of one or more
(hence the first "Poly") polygons, and a polygon is simply a filled area with a fixed
number of vertices. In other words, a PolyPolygon is a set of polygons with at least
one element. To create a triangle, you’d use something like

Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size
Dim oPolyPolygonShape As Object
Dim vPolyPolygon As Variant
Dim mCoordinates(2) As New com.sun.star.awt.Point

oPolyPolygonShape = oDocument.createInstance("com.sun.star.drawing.PolyPolygonShape")
aPoint.X = 5000
aPoint.Y = 3000
aSize.Width = 5000
aSize.Height = 5000
oPolyPolygonShape.Size = aSize
oPolyPolygonShape.Position = aPoint
oPage.add(oPolyPolygonShape)
mCoordinates(0).x = 5000
mCoordinates(1).x = 7500
mCoordinates(2).x = 10000
mCoordinates(0).y = 5000
mCoordinates(1).y = 7500
mCoordinates(2).y = 5000
vPolyPolygon = oPolyPolygonShape.PolyPolygon
vPolyPolygon = Array(mCoordinates())
oPolyPolygonShape.PolyPolygon = vPolyPolygon

As before, you create a shape by calling createInstance() with the appropriate
name of the shape and set its position and size after you have created it. You must
than add it to the current page before you can specify the points of the polygon. The
points are provided in an array which is assigned to the the PolyPolygon property
of the shape. This property is a sequence of PointSequence, which is in turn a

92 StarOffice Programmer’s Tutorial ♦ May 2000

sequence of com.sun.star.awt.Point. In StarBasic, this translates to an array of
array of points.

4.5.4.2 Creating figures with holes
All polygons, i.e. figures with three and more corners can be created as shown in the
triangle example. A polygon with a hole is simply a sequence of two polygons, as
shown below.

Dim oPolyPolygonShape As Object
Dim vPolyPolygon As Variant
Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size
Dim aSquare1(3) As New com.sun.star.awt.Point
Dim aSquare2(3) As New com.sun.star.awt.Point

oPolyPolygonShape = oDocument.createInstance("com.sun.star.drawing.PolyPolygonShape")
aPoint.x = 5000
aPoint.y = 3000
aSize.width = 5000
aSize.height = 5000
oPolyPolygonShape.Size = aSize
oPolyPolygonShape.Position = aPoint
oPage.add(oPolyPolygonShape)
aSquare1(0).x = 5000
aSquare1(1).x = 10000
aSquare1(2).x = 10000
aSquare1(3).x = 5000
aSquare1(0).y = 5000
aSquare1(1).y = 5000
aSquare1(2).y = 10000
aSquare1(3).y = 10000
aSquare2(0).x = 6500
aSquare2(1).x = 8500
aSquare2(2).x = 8500
aSquare2(3).x = 6500
aSquare2(0).y = 6500
aSquare2(1).y = 6500
aSquare2(2).y = 8500
aSquare2(3).y = 8500
vPolyPolygon = oPolyPolygonShape.PolyPolygon
vPolyPolygon = Array(aSquare1(),aSquare2())
oPolyPolygonShape.PolyPolygon = vPolyPolygon

This example creates a PolyPolygon which consists of two squares. The coordinates
of the first square are stored in Square1, those of the second square are stored in
Square2. These two arrays are then assembled to an array of arrays which is assigned
to oPolyPolygonShape.

You might ask why one would ever want to have PolyPolygons. One possible
answer is the picture drawn when you execute the program above. It shows a square
that seems to have a square hole in the center. What appears to be a hole, though, is
in fact the second square. It is drawn as a hole because StarOffice API applies the
so-called even-odd rule when filling multiple polygons.

Using StarOffice API - Building blocks 93

The even-odd rule considers a point to be inside a polygon when any line drawn
from it towards infinity crosses the polygon an odd number of times. Conversely, a
point is considered to be outside the polygon when the line crosses the polygon an
even number of times. Consider the inner square that lies completely inside the first
one. If you draw a line from one of its inner points to the outside, it crosses the
inner square first and then the outer square. Two intersections are an even number,
so the points in the second square are outside the polygon. Since the fill color is only
applied to the polygon’s inside, the second square is not filled and appears as a hole
in the first square. The picture below shows this.

Figure 4–20 Even-odd rule

4.5.4.3 Creating self-intersecting Polygons
A second example will illustrate the even-odd rule. It will display one single polygon
that intersects itself, thereby creating a hole.

Dim oPolyPolygonShape As Object
Dim vPolyPolygon As Variant
Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size
Dim aSquare1(3) As New com.sun.star.awt.Point
Dim aSquare2(3) As New com.sun.star.awt.Point

oPolyPolygonShape = oDocument.createInstance("com.sun.star.drawing.PolyPolygonShape")
aPoint.x = 5000
aPoint.y = 3000
aSize.width = 5000
aSize.height = 5000
oPolyPolygonShape.Size = aSize
oPolyPolygonShape.Position = aPoint
oPage.add(oPolyPolygonShape)

Dim mStar(4) As New com.sun.star.awt.Point

mStar(0).x = 8000
mStar(0).y = 3000

94 StarOffice Programmer’s Tutorial ♦ May 2000

mStar(1).x = 10000
mStar(1).y = 8000

mStar(2).x = 4800
mStar(2).y = 4800
mStar(3).x = 11200
mStar(3).y = 4800

mStar(4).x = 5700
mStar(4).y = 8000

vPolyPolygon = oPolyPolygonShape.PolyPolygon
vPolyPolygon = Array(mStar())
oPolyPolygonShape.PolyPolygon = vPolyPolygon

Again, a line from any point in the center of the star would have to cross the
polygon an even number of times.

To draw lines instead of filled polygons, you’d use the same approach as presented.
Instead of com.sun.star.drawing.PolyPolygonShape you create an instance
of com.sun.star.drawing.PolyLineShape or
com.sun.star.drawing.LineShape. The first one allows you to draw several
unconnected line segments in one step while the second one draws a single line
segment. To draw a simple line connecting two points, you might want to use a
subroutine like this:

Function createLine (oDocument,page,x1,y1,x2,y2) As Object
REM Creates a Line from (x1,y1) To (x2,y2)
Dim aPoint As New com.sun.star.awt.Point
Dim aSize As New com.sun.star.awt.Size

aPoint.x = x1
aPoint.y = y1
aSize.Width = x2-x1
aSize.Height = y2-y1
oLine = oDocument.createInstance("com.sun.star.drawing.LineShape")
oLine.Size = aSize
oLine.Position = aPoint
page.add(oLine)

Dim points(1) As New com.sun.star.awt.Point

points(0).x = x1
points(0).y = y1
points(1).x = x2
points(1).y = y2
aLineShape = oLine.PolyPolygon
aLineShape = Array(points())
oLine.PolyPolygon = aLineShape
createLine = oLine
End Function

4.5.5 Manipulating shapes
There are several things you may want to do with shapes after you have created
them. The changes fall in one of two groups:

Using StarOffice API - Building blocks 95

� Geometric modifications

� Graphic modifications
Geometric modifications comprise all kinds of transformations like moving (aka
translating), rotating, scaling and shearing of objects. Graphic modifications don’t
change the size, form or position of the object, but aspects of its visual appearance
like the fill color. As mentioned before, graphic modifications don’t work directly
with objects that have been added to a group.

4.5.5.1 Moving and scaling shapes
To move a single shape or a group of shapes, you canset its position to a new value
like this:

Dim aNewPos As New com.sun.star.awt.Point

aNewPos.x = 10000
aNewPos.y = 15000
oShape.Position = aNewPos

Note in StarBasic you cannot simply assign values to oShape.Position.x or
oShape.Position.y to move the shape.

You scale shapes like this:

aSize = oShape.Size
aSize.Width = aSize.Width * 0.5
aSize.Height = aSize.Height * 0.5
oShape.Size = aSize

This code would halve the size of aShape. If you have ever done graphics
programming before, you are probably aware of the "fixed point" problem: When
you scale an object, its coordinates are multiplied by a constant value. This not only
changes its size but also its position, unless you take special caution to avoid this
effect. The fixed point of an object is the one point that doesn’t move when you
scale it. This fixed point is given by the Position property.

To scale an object using another fixed point, you could use this subroutine:

Sub scale(oShape, nFx, nFy, nScaleX, nScaleY)
p = oShape.Position
px = p.X
py = p.Y
dx = px - nFx
dy = py - nFy
p.X = nFx
p.Y = nFy
oShape.Position = p
aSize = oShape.Size
aSize.Width = aSize.Width * nScaleX
aSize.Height = aSize.Height * nScaleY
oShape.Size = aSize
p.X = p.X + dx * nScaleX
p.Y = p.Y + dy * nScaleY

96 StarOffice Programmer’s Tutorial ♦ May 2000

oShape.Position = p
End Sub

The scale() subroutine first moves the object’s Position so that it coincides
with the fixed point fx/fy. It then scales the object as described before and finally
moves it back to its original position, taking into account the object’s new size.

4.5.5.2 Rotating shapes
Rotating objects is similar to moving or scaling them, but StarOffice API takes care of
the fixed point for you.

Sub rotate(oShape, nFx, nFy, nAngle)
Dim nAngleI

nAngleI = nAngle * 100
oShape.RotationPointX = nFx
oShape.RotationPointY = nFy
oShape.RotateAngle = nAngleI

End Sub

This subroutine rotates the object oShape around the point nFx/nFy by nAngle
degrees counter-clockwise. All it needs to do is to set three properties that determine
the rotation angle and fixed point. Since StarOffice API expects the rotation angle in
100ths of a degree, the subroutine scales its last parameter accordingly.

Using StarOffice API - Building blocks 97

98 StarOffice Programmer’s Tutorial ♦ May 2000

CHAPTER 5

Code Complete

This chapter presents complete StarOffice API programs written in StarBasic. Each of
them is designed to solve a single problem or perform a single task. In most cases,
the complete program is printed with annotations explaining it. Some trivial code is
occasionally left out to save space.

Although the samples are arranged by modules like Text, Data etc. this grouping is
somewhat arbitrary as most of the examples use functions from several modules. We
have tried to organize these programs by sections that deal with similar problems.

5.1 Text
The examples in this section concentrate on automated treatment of text. You will see
how to change attributes, how to enforce spelling and stylistic rules, and how to
generate an index automatically. The two most used interfaces here are
XSearchDescriptor() and XTextCursor().

5.1.1 Modifying text automatically
If you are writing or editing text documents, some automation can help you to
perform your work more efficiently. The next examples will give you some ideas
about the kind of automated text processing you can achieve with StarOffice API.
They use simple search descriptors and regular expressions and demonstrate how to
change styles and text.

The overall structure of these examples is quite similar:

� Create a search or replace descriptor.

99

� Call the findAll() or replaceAll()method on this descriptor. We use the
method pair findFirst()/findNext() occasionally instead of findAll().

� Perform the necessary changes for each text range returned by this method. These
changes are modifications of the style, to make the text range stand out or
insertion of bookmarks enabling direct navigation to them.

5.1.1.1 Changing appearance
To change the style used for certain words, you can start with the following example.

Sub Main
Dim oDocument As Object
Dim oSearch As Object, oResult As Object
Dim oFound As Object, oFoundCursor As Object
Dim n As Long

oDocument = ThisComponent
oSearch = oDocument.createSearchDescriptor
oSearch.SearchString = "the[a-z]"
oSearch.SearchRegularExpression = TRUE
oResult = oDocument.findAll(oSearch)
For n = 0 To oResult.count - 1

oFound = oResult(n)
oFoundCursor = oFound.Text.createTextCursorByRange(oFound)
oFoundCursor.CharWeight = com.sun.star.awt.FontWeight.BOLD

Next n
oSearch.SearchString = "all[a-z]"
oFound = oDocument.findFirst(oSearch)
While NOT IsNull(oFound)

oFoundCursor = oFound.Text.createTextCursorByRange(oFound)
oFoundCursor.CharPosture = com.sun.star.awt.FontSlant.ITALIC
oFound = oDocument.findNext(oFound, oSearch)

Wend
End Sub

This code searches for the regular expression the[a-z] which stands for the text
portion the followed by exactly one lowercase letter. All occurrences of these four
letters are then changed to be displayed in bold characters. The same happens in the
next part of the program, this time changing the appearance of all[a-z] to italic.
In order for this example to work, you must execute it from an open text document.

5.1.1.2 Replacing text
If you regularly receive documents from other people for editing, you might want to
make sure that certain words are always written the same. The next example
illustrates this by forcing certain words to be spelled in American English.

Sub Main
Dim mBritishWords(5) As String
Dim mUSWords(5) As String

100 StarOffice Programmer’s Tutorial ♦ May 2000

Dim n As Long
Dim oDocument As Object
Dim oReplace As Object

mBritishWords() = Array("colour", "neighbour", "centre", _
"behaviour", "metre", "through")

mUSWords() = Array("color", "neighbor", "center", _
"behavior", "meter", "thru")

oDocument = ThisComponent
oReplace = oDocument.createReplaceDescriptor
For n = lbound(mBritishWords()) To ubound(mBritishWords())

oReplace.SearchString = mBritishWords(n)
oReplace.ReplaceString = mUSWords(n)
oDocument.replaceAll(oReplace)

Next n
End Sub

In order for this example to work, you must execute it from an open text document.
For a real world application, you’d probably want to read the words from an
external file.

5.1.1.3 Using regular expressions
Another application of automatic text modification is related to stylistic questions.
Suppose your company’s policy is to avoid the use of certain words. You want to
replace these words, but you can’t do that automatically, because you have to find
the appropriate replacement which depends on the context. So instead of deleting or
replacing the offending words automatically, you change their color to make them
stand out during a subsequent manual review process.

The following example handles two kinds of unwanted wordings: those which are
absolutely forbidden and must be replaced by something else, and those which are
considered bad style. A subroutine is responsible for the changes. It can be used to
make all words in a list appear in a certain color in the text document. To keep the
lists short, we are using regular expressions here which provide for the variants of
the words (plural, adjective etc.).

Sub Main
Dim mOffending(3) As String
Dim mBad(3) As String
Dim nOffendColor As Long
Dim nBadColor As Long

mOffending() = Array("negro(e|es)?","bor(ed|ing)?", _
"bloody?", "bleed(ing)?")

mBad() = Array("possib(le|ilit(y|ies))", _
"real(ly)+", "brilliant", "\<[a-z]+n\’t\>")

nOffendColor = RGB(255,0,0)
nBadColor = RGB(255,128,0)
colorList(mOffending(), nOffendColor)
colorList(mBad(), nBadColor)

End Sub

Code Complete 101

Sub colorList(mList As Variant, nColor As Long)
Dim n As Long
Dim oDocument As Object
Dim oSearch As Object, oFound As Object
Dim oFoundCursor As Object

oDocument = ThisComponent
oSearch = oDocument.createSearchDescriptor
oSearch.SearchRegularExpression = TRUE
For n = LBound(mList()) To UBound(mList())

oSearch.SearchString = mList(n)
oFound = oDocument.findFirst(oSearch)
While NOT IsNull(oFound)

oFoundCursor = _ oFound.Text.createTextCursorByRange(oFound)
oFoundCursor.CharColor = nColor
oFound = oDocument.findNext(oFound,oSearch)

Wend
Next n

End Sub

Here, we use two lists of regular expressions mOffending and mBad. Those words
that match one of the expressions in mOffending are marked red in the text,
because we have to get rid of them. Those in mBad are marked orange, as they are
considered bad style only. The regular expressions here are not overly complex, but
two of them might merit a closer look: possib(le|ilit(y|ies)) matches all
occurrences of possible, possibility, and possibilities. It looks for possib
followed by either le or by ilit(y|ies), which is ility or ilities. The other
interesting regular expression is \<[a-z]+n\’t\>. It finds all abbreviated negations
like don’t, can’t etc. by looking for the start of a word (\<), at least one lowercase
letter ([a-z]+)) followed by n’t at the end of the word (\>).

Most of the work is done by the subroutine colorList(). It creates a search
descriptor oSearch and sets its SearchRegularExpression property to TRUE. It
then loops over all strings in mList, changing the search descriptor’s
SearchString and finding all occurrences of them in the document. The color of
these words is then set to nColor.

5.1.1.4 Inserting bookmarks
The next example does something very similar. This time, however, we do not
change the color of the words but insert a bookmark at each of them. You can thus
use the StarOffice navigator to jump directly from word to word. Bookmarks have
first to be created using createInstance(). They are then inserted with
insertTextContent() at the current text range.

Sub Main
Dim mOffending(3) As String
Dim mBad(3) As String
Dim sOffendPrefix As String
Dim sBadPrefix As String

mOffending() = Array("negro(e|es)?","bor(ed|ing)?", _
"bloody?", "bleed(ing)?")

102 StarOffice Programmer’s Tutorial ♦ May 2000

mBad() = Array("possib(le|ilit(y|ies))", _
"real(ly)", "brilliant", "\<[a-z]+n\’t\>")

sOffendPrefix = "Offending"
sBadPrefix = "BadStyle"
markList(mOffending(), sOffendPrefix)
markList(mBad(), sBadPrefix)

End Sub

Sub markList(mList As Variant, sPrefix As String)
Dim n As Long, nCount As Long
Dim oDocument As Object
Dim oSearch As Object, oFound As Object
Dim oFoundCursor As Object
Dim oBookmark As Object

oDocument = ThisComponent
oSearch = oDocument.createSearchDescriptor
oSearch.SearchRegularExpression = TRUE
nCount=0
For n = LBound(mList()) To UBound(mList())
oSearch.SearchString = mList(n)
oFound = oDocument.findFirst(oSearch)
While NOT IsNull(oFound)

nCount=nCount+1
oFoundCursor = _
oFound.Text.createTextCursorByRange(oFound)
oBookmark = _
oDocument.createInstance("com.sun.star.text.Bookmark")
oBookmark.Name=sPrefix + CStr(nCount)
oDocument.Text.insertTextContent(oFoundCursor,_

oBookmark,TRUE)
oFound = oDocument.findNext(oFound, oSearch)

Wend
Next n

End Sub

The main difference to the preceding example is the For loop in markList().
Instead of changing the color of the current word, it creates a new bookmark,
oBookmark, whose name is the current word with an integer appended. It then
inserts this bookmark at the word.

5.1.2 Creating an index
Indices for text documents can be created manually in StarWriter by clicking on the
words that shall appear in the index. If the document is large or if you have to
generate indices for several documents, this task should be automated. The following
program consists of three main parts:

� It first opens an external file containing the words to appear in the index.

� It loops over the file content and marks every occurrence of each word in the text
document using a text content of type documentIndexMark. We use a search
descriptor here again.

� When the file is exhausted, the program appends the index to the document.

Code Complete 103

REM sUrl URL to indexlist.txt
Sub Main

ApplyIndexList(sUrl, ThisComponent)
End Sub
Sub ApplyIndexList(sIndexFilePath As String, oDocument As Object)

Dim oText As Object
Dim nFileNumber As Long
Dim sLineText As String

oText = oDocument.Text
nFileNumber = FreeFile
Open sIndexFilePath For Input As #nFileNumber
While Not eof(nFileNumber)

Line Input #nFileNumber, sLineText
If sLineText <> "" Then

SearchWordInTextAndInsertIndexEntry(oDocument, sLineText)
End If

Wend
Close #nFileNumber
InsertDocumentIndex(oDocument)

End Sub

The main part of the program opens the external file sIndexFilePath and reads it
line by line. For the sake of simplicity, each line is supposed to contain exactly one of
the index terms. The words are then passed to
SearchWordInTextAndInsertIndexEntry(). When the file is exhausted, the
subroutine InsertDocumentIndex() is called to add the index to the document.

Sub SearchWordInTextAndInsertIndexEntry(oDocument As Object,_
sEntry As String)

oSearch = oDocument.createSearchDescriptor
oSearch.SearchString = sEntry
oFound = oDocument.findAll(oSearch)
For n = 0 To oFound.Count - 1

oFoundPos = oFound(n)
oIndexEntry = _

oDocument.createInstance("com.sun.star.text.DocumentIndexMark")
oFoundPos.text.insertTextContent(oFoundPos, oIndexEntry, TRUE)

Next n
End Sub

The subroutine SearchWordInTextAndInsertIndexEntry() creates the search
descriptor oSearch and sets its SearchString property to the word to look for
(sEntry). It then loops over all occurrences of this word and inserts the special text
content DocumentIndexMark at this position.

Sub InsertDocumentIndex(oDocument As Object)
oText = oDocument.Text
oCursor = oText.createTextCursor
oCursor.GotoEnd(FALSE)
oText.insertControlCharacter(oCursor,_

com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, FALSE)
oText.insertControlCharacter(oCursor,_

com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, FALSE)
oCursor.goLeft(1, FALSE)
oIndex = oDocument.createInstance("com.sun.star.text.DocumentIndex")
oIndex.UseCombinedEntries = TRUE

104 StarOffice Programmer’s Tutorial ♦ May 2000

oIndex.Title = "Index"
oIndex.UsePP = TRUE
oText.insertTextContent(oCursor, oIndex, FALSE)
oIndex.update()
End Sub

Finally, the subroutine InsertDocumentIndex() inserts the complete index. It
creates a text cursor (oCursor) and uses it to move to the end of the text, where it
adds two paragraph breaks. The index (oIndex) is then created with
createInstance(). Its title is set to Index, and the style is defined so that for
each entry only the first page number is shown, possibly with an appended ff if the
entry occurs on other pages as well. UsePP specifies the format for the page
numbers. If it is set to FALSE, the first and last page would be printed instead of only
the first one. If CombineEntries is FALSE, all occurrences of each entry is listed.

5.2 Sheet
5.2.1 Adapting to Euroland

Most of the member of the European Union will abandon their old currency in favor
of the new Euro in 2001. This requires modifications to all programs using the old
currencies. Since the exchange rates for the old currencies have been fixed at the end
of 1999, one can already convert old data. The following program does this for all
values in a table that are formatted with the currency string DM. Three steps are
necessary for this modification:

� First, it finds all cells using a number format of type CURRENCY and containing DM
as currency string. We use an enumeration to loop over all cells here.

� A new number format is then defined for these cells and applied to them.

� Finally, the cell’s values are corrected to show the new amount in Euro.

Sub Main
Dim oDocument As Object

oDocument = ThisComponent
oDocument.addActionLock
Convert(oDocument.Sheets(0), oDocument.NumberFormats, "DM", _
"EUR", 1.95583)

oDocument.removeActionLock
End Sub

The main program just calls the subroutine Convert() which does nearly all the
work. It receives the sheet, the NumberFormats interface, the names of the old and
the new currency, and the conversion factor as parameters. The call is embedded in
addActionLock() and removeActionLock() calls, which delays update of the

Code Complete 105

table view until Convert() has terminated. This speeds up the function
considerably, since the table is only redrawn once.

Sub Convert(oSheet As Object, oFormats As Object,_
sOldSymbol As String, sNewSymbol As String,_
fFaktor As Double)

Dim nSimpleKey As Long
Dim aLanguage As New com.sun.star.lang.Locale
Dim sSimple As String
Dim oFormat As Object
Dim oRanges As Object, oRange As Object
Dim n As Long
Dim sNew As String
Dim oValues As Object
Dim oCells As Object, oCell As Object

aLanguage.Country = "de"
aLanguage.Language = "de"
sSimple = "0 [$"+sNewSymbol+"]"
nSimpleKey = NumberFormat(oFormats, sSimple, aLanguage)
oRanges = oSheet.CellFormatRanges.createEnumeration

The first few lines of Convert() determine the key of a simple format using the
new currency symbol (nSimpleKey) and the function NumberFormat() (see
below). Then a collection of ranges is retrieved from the sheet. Every element in this
collection is a range whose cells are using the same format. Convert() will now
iterate over these ranges.

While oRanges.hasMoreElements
oRange = oRanges.nextElement
oFormat = oFormats.getByKey(oRange.NumberFormat)

Every range (oRange) is characterized by the fact that all its cells use the same
format. Its properties are retrieved here with the format’s getByKey() method.

If (oFormat.Type AND com.sun.star.util.NumberFormat.CURRENCY)_
And (oFormat.CurrencySymbol = sOldSymbol) Then

The line above will be executed only if the current format is of a type that
encompasses currency formats and if the currency string is identical to the old one
(sOldSymbol). The condition in the if statement first calculates the integer AND of
oFormat.Type and com.sun.star.util.NumberFormat.CURRENCY. This
expression yields TRUE only if CURRENCY is a part of oFormat.Type. You cannot
simply check for equality here because the number formats in StarOffice API can be
combinations of several base formats.

If (oFormat.Type AND com.sun.star.util.NumberFormat.CURRENCY)_
And (oFormat.CurrencySymbol = sOldSymbol) Then

sNew = oFormats.generateFormat(nSimpleKey, oFormat.Locale, _
oFormat.ThousandsSeparator, _
oFormat.NegativeRed, _
oFormat.Decimals, oFormat.LeadingZeros)

oRange.NumberFormat = NumberFormat(oFormats, sNew, oFormat.Locale)
oValues = oRange.queryContentCells(com.sun.star.sheet.CellFlags.VALUE)
If oValues.Count > 0 Then

106 StarOffice Programmer’s Tutorial ♦ May 2000

oCells = oValues.Cells.createEnumeration
While oCells.hasMoreElements

oCell = oCells.nextElement
oCell.Value = oCell.Value / fFaktor

Wend
End If

End If
Wend
End Sub

The function generateFormat() create a new format string based on the simple
format (nSimpleKey) generated at the very beginning of the subroutine. All we
really do here is to change the currency’s name, the other properties of the current
format remain untouched. This string is passed to the function NumberFormat()
which returns a suitable format key. The key is then assigned to the NumberFormat
property of the current range, which effectively sets its format to use the new
currency name. Finally, we loop over all cells in the current range which contain a
constant value and adjust this value according to the currency exchange rate.

Function NumberFormat(oFormats As Object,_
sFormat As String , aLanguage As Variant) As Long

Dim nRetKey As Long

nRetKey = oFormats.queryKey(sFormat, aLanguage, true)
If nRetKey = -1 Then

nRetKey = oFormats.addNew(sFormat, aLanguage)
If nRetKey = -1 Then nRetKey = 0

End If
NumberFormat = nRetKey

End Function

The function NumberFormat() searches for a given format string in the list of
formats using queryKey(). This method returns either the key of the existing format
string or -1 if the string didn’t exist previously. In this case, the function creates a
new format using addNew(). In any case, the key of the format string is returned.

5.3 Drawing
The following example converts a textual form of a directory tree into a graphics.

5.3.1 Import/Export of ASCII files
You can use the drawing facilities of StarOffice API to generate a picture from ASCII
input. One application would be a hierarchical representation of a directory listing,
based on textual data which looks like this:

Code Complete 107

Explorer
Workspace

Bookmarks
Bugtracker
Databases
Macros
Starmath
StarOffice API
ToDo
Translations
Chinese
German
English
French
Italian
Dutch
Portuguese
Swedish
Spanish

Examples
Databases

Files

This is an extract from a directory listing. Every directory is indented three spaces
from the preceding one. The complete path to the file Chinese is therefore
Explorer/Workspace/Translations/Chinese. This data would be displayed
as shown in the picture below. Every file and directory name is written in a text box.
Directories on the same level are connected by a vertical line. Files and subdirectories
in a directory are connected by a horizontal line to this vertical line.

108 StarOffice Programmer’s Tutorial ♦ May 2000

Figure 5–1 Directory tree

The following application reads such a file and produces a graphical representation
of its contents. It performs several steps:

� Open the data file and read one line at a time.

Code Complete 109

� Determine the indentation of this line relative to the previous one.

� Create a graphics text from the line and calculate its dimensions.

� Add a new page if the text doesn’t fit on the current one.

� Draw the lines connecting the current item to the one on on the previous level.

5.3.1.1 Setting up
Before the real code starts, we define some constants that permit us to write down
the rest of the program more clearly. Since they represent values used in many places
in the code it’s reasonable to define them only once thus allowing for easier
modification.

Const SBBASEWIDTH = 8000
Const SBBASEHEIGHT = 1000
Const SBPAGEX = 800
Const SBPAGEY = 800
Const SBBASECHARHEIGHT = 12
Const SBRELDIST = 1.1

The constants above are used throughout the whole program. The following table
lists them together with their meaning.

Name Meaning

SBASEWIDTH Original width of the text fields in 100th mm

SBASEHEIGHT Original height of the text fields in 100th mm

SBPAGEX Left page margin in 100th mm

SBPAGEY Top/bottom page margin in 100th mm

SBBASECHARHEIGHT Character height in points

SBRELDIST Factor to increase spacing between entries

Const SBBASEX = 0
Const SBBASEY = 1
Const SBOLDSTARTX = 2
Const SBOLDSTARTY = 3
Const SBOLDENDX = 4
Const SBOLDENDY = 5
Const SBNEWSTARTX = 6
Const SBNEWSTARTY = 7
Const SBNEWENDX = 8
Const SBNEWENDY = 9
Dim nActLevel as Integer
Dim nConnectLevel as Integer
Dim mLevelPos(10,9) As Integer

110 StarOffice Programmer’s Tutorial ♦ May 2000

The preceding constants are used to specify the second index of the two-dimensional
array mLevelPos which records positions for every level. Their meaning is listed in
the next table.

Name Meaning

SBBASEX X coordinate of the starting point for the
level.

SBBASEY Y coordinate of the last text drawn in this
level.

SBOLDSTARTX X start coordinate for vertical connecting
lines.

SBOLDSTARTY Y start coordinate for vertical connecting
lines.

SBOLDENDX X end coordinate for vertical connecting
lines.

SBOLDENDY Y end coordinate for vertical connecting
lines.

SBNEWSTARTX X start coordinate for next vertical
connecting line.

SBNEWSTARTY Y start coordinate for next vertical
connecting lines.

SBNEWENDX X end coordinate for next vertical connecting
line.

SBNEWENDY Y end coordinate for next vertical connecting
line.

5.3.1.2 Initialization
We start by initializing some global variables and acquiring the desktop service. We
then request the drawPage of the current document and start reading the file
containing the textual representation of the tree.

Sub TreeInfo(sFilePath As String)
REM Variable declarations ommitted
bStartUpRun = TRUE
nOldHeight = 200
nOldY = SBPAGEY
nOldX = SBPAGEX
nOldWidth = SBPAGEX
nActPage = 0
oDocument = ThisComponent
oPage = oDocument.drawPages(nActPage)
nFileHandle = FreeFile
Open sFilePath For Input As nFileHandle

Code Complete 111

The preceding lines open the file sFilePath for input. This filename is the only
parameter of the subroutine. Note that we have omitted variable declarations for the
sake of brevity.

While Not Eof(nFileHandle)
Line Input #nFileHandle, sActDir
nBaseLength = Len(sActDir)
nModLength = Len(LTrim(sActDir))
sActDir = LTrim(sActDir)
If nBaseLength - nModLength > 0 Then

nActLevel = (nBaseLength - nModLength) / 3
nConnectLevel = nActLevel -1

Else
nActLevel = 0
nConnectLevel = 0

End If

The While loop iterates over all lines of the input file. It reads the next file or
directory name into the variable sActDir and figures out the indentation level using
nBaseLength and nModLength. The first variable is the complete length of the line,
possibly including leading spaces. The second one is just the name of the file or
directory with leading spaces removed. The difference of these two variables divided
by three gives the indentation level for the current entry, stored in nActLevel. The
variable nConnectLevel indicates the number of the preceding level - it is thus
nActLevel-1.

5.3.1.3 Drawing an item
Before we can actually draw the current entry, we have to make sure that it fits
completely on the current page. If it does not, we’ll add a new draw page and reset
some of the global variables. The text is then drawn and the current positions are
updated.

If nOldY + (nOldHeight + SBBASECHARHEIGHT)* 1.5 > _
oPage.Height - SBPAGEY Then

nActPage = nActPage + 1
oDocument.getDrawPages.InsertNewbyIndex(nActPage)
Set oOldPage = oPage
oPage = oDocument.drawPages(nActPage)
For n = 0 To nConnectLevel
mLevelPos(n,SBNEWENDY) = oOldPage.Height - SBPAGEY
oOldLeavingLine = DrawLine(n, SBNEWSTARTX, SBNEWSTARTY,_

SBNEWSTARTXX, SBNEWENDY)
oOldPage.Add(oOldLeavingLine)

Next
For n = 0 To nConnectLevel
mLevelPos(n,SBNEWSTARTY) = SBPAGEY
Next
nOldY = SBPAGEY

End If

This chunk of code takes care of page breaks. If the next entry would overflow the
current draw page, nActPage is incremented and a new draw page inserted in the

112 StarOffice Programmer’s Tutorial ♦ May 2000

document by calling InsertNewbyIndex(). The condition to determine possible
overflow is based on some heuristics, since we can’t be sure about the size of the
bounding box before having drawn it. The program then draws the vertical
connecting lines to the next page. To do so, we have to update the SBNEWENDY
element of mLevelPos so that it contains the lowest y coordinate of a page. The
function DrawLine() then creates a line from mLevelPos(n,SBNEWSTARTX)/
mLevelPos(n,SBNEWSTARTY) to mLevelPos(n,SBNEWSTARTX)/
mLevelPos(n,SBNEWENDY) for every level from 0 to nConnectLevel. Finally the
mLevelPos(n,SBNEWSTARTY) entries and nOldY are set to the top margin of the
page.

oActText = CreateText()
oPage.add(oActText)
oActText.LineStyle = 1
oActText.Charheight = SBBASECHARHEIGHT
oActText.TextAutoGrowWidth = TRUE
oActText.TextAutoGrowHeight = TRUE
oActText.String = sActDir
aPoint.x = mLevelPos(nActLevel,SBBASEX)
oActText.Position = aPoint
aSize.Height = SBRELDIST * oActText.CharHeight
aSize.Width = SBRELDIST * oActText.Size.Width
oActText.Size = aSize
mLevelPos(nActLevel,SBBASEY) = oActText.Position.Y

These lines add the entry for the current text using the function CreateText(). The
shape created by it is added to the current draw page and some properties are set to
ensure that the surrounding box grows with the text. To increase the margin of the
text, the default box dimensions are increased by multiplying them with SBRELDIST.

If bStartUpRun = FALSE Then
If nActLevel <> 0 Then
mLevelPos(nActLevel,SBOLDSTARTX) =_

mLevelPos(nConnectLevel,SBNEWSTARTX)
mLevelPos(nActLevel,SBOLDSTARTY) =_

oActText.Position.Y + 0.5 * oActText.Size.Height
mLevelPos(nActLevel,SBOLDENDX) =_

mLevelPos(nActLevel,SBBASEX)
mLevelPos(nActLevel,SBOLDENDY) =_

mLevelPos(nActLevel,SBOLDSTARTY)
oOldArrivingLine = DrawLine(nActLevel, SBOLDSTARTX,_

SBOLDSTARTY, SBOLDENDX,_
SBOLDENDY)

oPage.Add(oOldArrivingLine)
mLevelPos(nConnectLevel,SBNEWENDX) =_

mLevelPos(nConnectLevel,SBNEWSTARTX)
mLevelPos(nConnectLevel,SBNEWENDY) =_

oActText.Position.Y + 0.5 * oActText.Size.Height
Else
mLevelPos(nConnectLevel,SBNEWENDY) = oActText.Position.Y
mLevelPos(nConnectLevel,SBNEWENDX) =_

mLevelPos(nConnectLevel,SBNEWSTARTX)
End If
oOldLeavingLine = DrawLine(nConnectLevel, SBNEWSTARTX,_

SBNEWSTARTY, SBNEWENDX,_
SBNEWENDY)

Code Complete 113

oPage.Add(oOldLeavingLine)
Else

bStartUpRun = FALSE
End If

5.3.1.4 Connecting to the including item
Now we have to connect the current entry with the vertical line descending from the
current directory. If the current level is 0 (as indicated by nActLevel)), we simply
set the SBNEWENDX and SBNEWENDY parts in mLevelPos to the SBNEWSTARTX entry
and the current text position (oActText.Position.Y), respectively. This sets up
mLevelPos so that the next DrawLine() call will create a vertical line
(oOldLeavingLine). If the current level is not 0, we have to add a horizontal line
connecting the text box to the descending line from the previous level’s vertical line.
This is achieved in the first part of the second If statement above by creating
oOldArrivingLine.

Horizontal and/or vertical lines are only drawn if bStartUpRun is FALSE, which is
the case for every entry but the very first one. If bStartUpRun is TRUE, it is simply
set to FALSE.

mLevelPos(nActLevel,SBNEWSTARTX) =_
mLevelPos(nActLevel,SBBASEX) + 0.5 * oActText.Size.Width
mLevelPos(nActLevel,SBNEWSTARTY) =_

mLevelPos(nActLevel,SBBASEY) + oActText.Size.Height
nOldHeight = oActText.Size.Height
nOldX = oActText.Position.X
nOldWidth = oActText.Size.Width
nOldLevel = nActLevel

Wend
Close #nFileHandle

Exit Sub

The rest of the main part updates two entries in mLevelPos and a couple of global
variables to reflect the positions of the text and line(s) just drawn. The first two
assignments to mLevelPos update the start coordinates of the line leaving from the
current entry.

5.3.1.5 Utility functions
Some functions take care of repetitive tasks like drawing the actual text and
calculating the current X position.

Function CreateText()
Dim oText As Object

aSize.Width = SBBASEWIDTH
aSize.Height = SBBASEHEIGHT
aPoint.x = CalculateXPoint()
aPoint.y = nOldY + SBRELDIST * nOldHeight
nOldY = aPoint.y
oText = oDocument.createInstance("com.sun.star.drawing.TextShape")
oText.Size = aSize

114 StarOffice Programmer’s Tutorial ♦ May 2000

oText.position = aPoint
CreateText = oText

End Function

CreateText() creates a text shape of size SBBASEWIDTH by SBBASEHEIGHT and
inserts it at the x coordinate returned by CalculateXPoint(). The y coordinate of
the text position is calculated by adding a bit more than the last text height to the
last y coordinate (stored in nOldY). The text shape is then returned.

Function CalculateXPoint()
If nActLevel = 0 Then

mLevelPos(nActLevel,SBBASEX) = SBPAGEX
Elseif nActLevel > nOldLevel Then

mLevelPos(nActLevel,SBBASEX) =_
mLevelPos(nActLevel-1,SBBASEX) + nOldWidth + 100

End If
CalculateXPoint = mLevelPos(nActLevel,SBBASEX)

End Function

CalculateXPoint() figures out the x coordinate of the current text box and stores
it in mLevelPos(nActLevel, SBBASEX). If the current level is 0, this is simply
the left page margin. If the current entry is the first one in its level (nActLevel >
nOldlevel) the x position is that of the last level incremented by the value of
nOldWidth plus a small margin of 1 millimeter, thereby increasing the indentation.

If the current level is less then the previous one, there is nothing to be done, because
the x values are already calculated

Function DrawLine(nLevel As Integer,_
nStartX As Integer, nStartY As Integer,_
nEndX As Integer, nEndY As Integer)

Dim oConnect As Object

aPoint.X = mLevelPos(nLevel,nStartX)
aPoint.Y = mLevelPos(nLevel,nStartY)
aSize.Width = mLevelPos(nLevel,nEndX) - mLevelPos(nLevel,nStartX)
aSize.Height = mLevelPos(nLevel,nEndY) - mLevelPos(nLevel,nStartY)
oConnect = oDocument.createInstance("com.sun.star.drawing.LineShape")
oConnect.Position = aPoint
oConnect.Size = aSize
DrawLine = oConnect

End Function

DrawLine() creates a line shape. It uses the nLevel and the nStartX/nStartY,
nEndX/nEndY pairs to retrieve the coordinates of the line from mLevelPos. The
newly created line shape is then returned to the caller.

Code Complete 115

5.4 Stock quotes updater
If you want to display stock charts for certain companies, you can fire up your
browser every day, go to Yahoo, look up the quote and copy it by hand into a table.
Or you can use a program that does all this automatically.

The following example relies on the sheet module. It uses URLs to obtain the current
stock quotes. The quotes are displayed in sheets, one for each company. We show a
line diagram and the numerical values for this company on every sheet. The
functionality is hidden in the three subroutines GetValue(), UpdateValue(), and
UpdateChart().

Option Explicit
Const STOCK_COLUMN = 2
Const STOCK_ROW = 6
Sub UpdateAll

Dim sName As String
Dim oCells As Object
Dim fDate As Double, fValue As Double
Dim oDocument As Object, oInputSheet As Object
Dim oColumn As Object, oRanges As Object

oDocument = ThisComponent
oDocument.addActionLock
oInputSheet = oDocument.Sheets(0)
oColumn = oInputSheet.Columns(STOCK_COLUMN)
oRanges = _
oDocument.createInstance("com.sun.star.sheet.SheetCellRanges")
oRanges.insertByName("", oColumn)
oCells = oRanges.Cells.createEnumeration
oCells.nextElement
While oCells.hasMoreElements

sName = oCells.nextElement.String
If GetValue(oDocument, sName, fDate, fValue) Then

UpdateValue(oDocument, sName, fDate, fValue)
UpdateChart(oDocument, sName)

Else
MsgBox sName + " Is Not available"

End If
Wend
oDocument.removeActionLock

End Sub

This macro should be run from a table document that contains the NASDAQ names
of the companies to look for in the column STOCK_COLUMN. The sample document
provided on the CD-ROM already contains a table and two buttons you can use to
insert new columns or to update the stock quotes. The program creates an unnamed
range for this column and then steps through all cells until it finds an emtpy one
using nextElement(). The first cell is skipped because it contains no valid
NASDAQ name but just a label for the column. The function GetValue() is then
used to retrieve the current quote. If the value can’t be found, a message is

116 StarOffice Programmer’s Tutorial ♦ May 2000

displayed. Otherwise, subroutines UpdateValue() and UpdateChart() are used
to update the value and chart for this company.

5.4.1 Retrieving URLs
We use Yahoo here to obtain the current stock quote. This requires retrieving a nURL
via StarOffice API and retrieving a part of its contents.

Function GetValue(oDocument As Object,_
sName As String,_
fDate As Double, fValue As Double)

Dim sUrl As String, sFilter As String
Dim sOptions As String
Dim oSheets As Object, oSheet As Object

oSheets = oDocument.Sheets
If oSheets.hasByName("Link") Then
oSheet = oSheets.getByName("Link")

Else
oSheet = _
oDocument.createInstance("com.sun.star.sheet.Spreadsheet")
oSheets.insertByName("Link", oSheet)
oSheet.IsVisible = False

End If
sUrl = "http://quote.yahoo.com/d/quotes.csv?s=" +_
sName + "&f=sl1d1t1c1ohgv&e=.csv"
sFilter = "Text - txt - csv (StarCalc)"
sOptions = _
"44,34,SYSTEM,1,1/10/2/10/3/10/4/10/5/10/6/10/7/10/8/10/9/10"

oSheet.link(sUrl, "", sFilter, sOptions, _
com.sun.star.sheet.SheetLinkMode.NORMAL)

fDate = oSheet.getCellByPosition(2,0).Value
fValue = oSheet.getCellByPosition(1,0).Value
GetValue = (fDate <> 0)

End Function

The function GetValue() first checks if a table with the name Link exists and
creates one if it doesn’t. Since this table is just used to store temporary results, we
turn its visibility off. The next line builds the URL needed to retrieve the quotes from
Yahoo and stores it in sUrl. Since we retrieve the data in CSV format, we have to
specify this in sFilter and provide the correct options so that StarOffice API can
parse the returned data. For more information on the CSV options, see Section 4.2.1
“Importing other Formats” on page 41. URL, filter and options are then passed to the
sheet’s link() method which causes StarOffice API to retrieve the data and store it
in the sheet. Afterwards, the third cell in the first row contains the current date and
the second cell the quote for this date. These values are returned in fDate and
fValue, respectively. The function itself returns TRUE if it could retrieve the quote
and false otherwise.

Code Complete 117

5.4.2 Updating the tables

When the current value has been determined, we have to update the table belonging
to that value. The following subroutine takes care of this.

Sub UpdateValue(oDocument As Object, sName As String,_
fDate As Double, fValue As Double)

Dim oSheets As Object, oSheet As Object
Dim nColumn As Long, nRow As Long
Dim oCursor As Object, oRanges As Object
Dim aAddress As Variant
Dim oCells As Object, oCell As Object
Dim aLanguage as New com.sun.star.lang.Locale

aLanguage.Country = "de"
aLanguage.Language = "de"
oSheets = oDocument.Sheets
sName = SheetNameFor(sName)
If oSheets.hasByName(sName) Then
oSheet = oSheets.getByName(sName)

Else
oSheet =_
oDocument.createInstance("com.sun.star.sheet.Spreadsheet")
oSheets.insertByName(sName, oSheet)

End If
oRanges =_
oDocument.createInstance("com.sun.star.sheet.SheetCellRanges")

oRanges.insertByName("", oSheet)
oCells = oRanges.Cells
If oCells.hasElements Then

oCell = oCells.createEnumeration.nextElement
oCursor = oSheet.createCursorByRange(oCell)
oCursor.collapseToCurrentRegion
aAddress = oCursor.RangeAddress
nColumn = aAddress.StartColumn
nRow = aAddress.EndRow
If oSheet.getCellByPosition(nColumn,nRow).Value <> fDate Then

nRow = nRow + 1
End If

Else
oSheet.getCellByPosition(1,18).String = "Date"
oSheet.getCellByPosition(2,18).String = sName
oSheet.getCellRangeByPosition(1,18,2,18).CharWeight = 150
nColumn = 1
nRow = 19

End If
oCell = oSheet.getCellByPosition(nColumn,nRow)
oCell.Value = fDate
oCell.NumberFormat =_
oDocument.NumberFormats.getStandardFormat(_
com.sun.star.util.NumberFormat.DATE, aLanguage)

oSheet.getCellByPosition(nColumn+1,nRow).Value = fValue
End Sub

Subroutine UpdateValue() receives the NASDAQ name (sName), the current date
(fDate) and the quote (fValue) as parameters. First, it verifies if a sheet named
sName exists and if not, creates it. The subroutine then creates a cell range for this
sheet. If the program has been run before, this range contains non-emtpy cells, and

118 StarOffice Programmer’s Tutorial ♦ May 2000

the if branch finds the last of these cells. If this cell’s value is different from fDate,
the variable nRow is incremented by one. This ensures that a later quote for the same
day overwrites an earlier one and that a quote for a later date is inserted in the next
row.

If this is the first time that a qoute for this company is retrieved, the cell range is
empty and we simply insert the strings Date and sName in cells B19 and C19,
respectively. The variables nColumn and nRow are then set to 1 and 19, which
addresses cell B20.

Finally, updateValue() inserts the values fDate and fValue in the cells at
nColumn and nColumn+1 in row nRow. The update for this company’s sheet is thus
complete.

5.4.3 Updating the chart
Finally we must update or create the line diagram. The following function
UpdateChart() first checks if a diagram exists already and possibly creates it. It
then adjusts the minimum and maximum values of its x and y axis according to the
values in the sheet making sure that no values are cut off.

Sub UpdateChart(oDocument As Object, sName As String)
Dim oSheet As Object
Dim oCell As Object, oCursor As Object
Dim oRanges As Object
Dim oDataRanges As Object, oChartRange As Object
Dim oEmbeddedChart As Object, oCharts As Object
Dim oChart As Object, oDiagram As Object
Dim oYAxis As Object, oXAxis As Object
Dim fMin As Double, fMax As Double
Dim nDateFormat As Long
Dim aPos As Variant
Dim aSize As Variant
Dim aLanguage as New com.sun.star.lang.Locale

aLanguage.Country = "de"
aLanguage.Language = "de"
oSheet = oDocument.Sheets.getByName(SheetNameFor(sName))
oCharts = oSheet.Charts
oRanges = oDocument.createInstance("com.sun.star.sheet.SheetCellRanges")
oRanges.insertByName("", oSheet)
oCell = oRanges.Cells.createEnumeration.nextElement
oCursor = oSheet.createCursorByRange(oCell)
oCursor.collapseToCurrentRegion
oDataRanges = oDocument.createInstance("com.sun.star.sheet.SheetCellRanges")
oDataRanges.insertByName("", oCursor)

Subroutine UpdateChart() takes care of displaying and updating the stock quotes
chart for one company. It begins with the creation of cursor which points to the first
of the cells showing the dates and quotes. The cursor is then collapsed to this region,
thereby spanning a rectangle which contains only the date and quote values. Using

Code Complete 119

createInstance() and insertByName(), the cursor’s rectangular region is then
used to define a range.

If Not oCharts.hasElements Then
oChartRange = oSheet.getCellRangeByPosition(1,1,7,16)
aPos = oChartRange.Position
aSize = oChartRange.Size

Dim oRectangleShape As New com.sun.star.awt.Rectangle

oRectangleShape.X = aPos.X
oRectangleShape.Y = aPos.Y
oRectangleShape.Width = aSize.Width
oRectangleShape.Height = aSize.Height
oCharts.addNewByName(sName, oRectangleShape,_
oDataRanges.RangeAddresses, true, false)
oChart = oCharts.getByName(sName).EmbeddedObject
oChart.diagram = oChart.createInstance("com.sun.star.chart.XYDiagram")
oChart.Title.String = sName
oDiagram = oChart.Diagram
oDiagram.DataRowSource = com.sun.star.chart.ChartDataRowSource.COLUMNS
oChart.Area.LineStyle = com.sun.star.drawing.LineStyle.SOLID
oXAxis = oDiagram.XAxis
oXAxis.StepMain = 1
oXAxis.StepHelp = 1
oXAxis.AutoStepMain = false
oXAxis.AutoStepHelp = false
oXAxis.TextBreak = false
oYAxis = oDiagram.getYAxis()
oYAxis.AutoOrigin = true
nDateFormat =_
oXAxis.NumberFormats.getStandardFormat(_
com.sun.star.util.NumberFormat.DATE, aLanguage)

oXAxis.NumberFormat = nDateFormat

If the charts collection (oCharts) of this sheet is empty, we have to create the chart
first. It is positioned just above the cells displaying the data. We use the Position
and Size properties of the range B2:H17 to find out the size and position of the
rectangle to contain the chart. As the first cell of the sheet is located at B20, this
rectangle lies above the stock quote values. The chart is then added to the charts
collection and its diagram type is set to XYDiagram, which ensures that it uses lines
to display the evolution of the quotes. The rest of the code just sets some of the
diagram properties.

Else
oChart = oCharts(0)
oChart.Ranges = oDataRanges.RangeAddresses
oChart.HasRowHeaders = false
oEmbeddedChart = oChart.EmbeddedObject
oDiagram = oEmbeddedChart.Diagram
oXAxis = oDiagram.XAxis

End If

The next lines are executed if the program has already been executed and the chart
therefore exists. They simply change its data range so that it contains all dates and
quotes and set the oXAxis variable.

120 StarOffice Programmer’s Tutorial ♦ May 2000

fMin = oCursor.getCellByPosition(0,1).Value
fMax = oCursor.getCellByPosition(0,oCursor.Rows.Count-1).Value
oXAxis.Min = fMin
oXAxis.Max = fMax
oXAxis.AutoMin = false
oXAxis.AutoMax = false

End Sub

This variable is needed because the minimum and maximum of the x axis have to be
updated each time the quotes are retrieved. The lines above simply get the first and
last date for the current quote (fMin and fMax) and adjust the x axis accordingly.
When you have run this program several times, the chart looks similar to the one
shown below.

Figure 5–2 Stock quotes

5.5 Troubleshooting
5.5.1 Debugging

Most programs you write will not work right from the beginning. Some errors like
misspelled or missing keywords are caught by the StarBasic interpreter before it even
starts to execute your program. These are easy to correct. Others are a bit more
difficult to catch because they happen at runtime.

StarOffice API provides three functions that permit you to inspect objects at runtime:

� DBG_properties() returns all properties defined for a class. Note that some
properties need not be defined for the particular object you are inquiring. Before
accessing this property, you should check its existence with isNull().

� DBG_methods() returns all methods defined for a class.

� DBG_supportedInterfaces() returns all interfaces supported by the current
object.

Code Complete 121

5.5.2 Displaying the object details
Sometimes it is not enough to know which properties an object has - you want to see
their values. Although this is not something easily accomplished in Basic, we will
show you some subroutines that should get you started. They expect an object as
input and generate a text document containing the names and values of all
properties in a table.

Sub GeneratePropertiesTable(oObject)
Dim vVariant as Variant

mProperties = oObject.PropertySetInfo.Properties
nCount = UBound(mProperties)-LBound(mProperties) + 2
oDocument = CreateTextDocument()
oText = oDocument.Text
oCursor = oText.createTextCursor()
oCursor.gotoStart(FALSE)
oTable = CreateTable()
oTable.initialize(nCount,2)
oText.insertTextContent(oCursor, oTable, FALSE)
oTableCursor = oTable.createCursorByCellName(oTable.CellNames(0))
oTableCursor.gotoStart(FALSE)
InsertNextItem("Name", oTableCursor, oTable)
InsertNextItem("Value", oTableCursor, oTable)
For i% = LBound(mProperties) To UBound(mProperties)

p = mProperties(i%)
n$ = p.name
vVariant = oObject.getPropertyValue(n$)
InsertNextItem(n$, oTableCursor, oTable)
If IsNull(vVariant) Then

sString = "NULL-Value"
ElseIf IsObject(vVariant) Then

sString = vVariant.dbg_properties
ElseIf IsArray(vVariant) Then

tmp$ = ""
For j% = LBound(vVariant) To UBound(vVariant)
vItem = vVariant(j%)
If IsNull(vItem) Then
sItemDescription = "NULL-Value"

ElseIf IsObject(vItem) Then
sItemDescription = vItem.dbg_properties

Else
sItemDescription = cstr(vItem)

End If
tmp$ = tmp$ + sItemDescription + "/"
Next j%
sString = tmp$

Else
sString = cstr(vVariant)

End If
InsertNextItem(sString, oTableCursor, oTable)

Next i%
End Sub

122 StarOffice Programmer’s Tutorial ♦ May 2000

The main entry point is the subroutine GeneratePropertiesTable(). It creates
an empty text document (CreateTextDocument()) and inserts a table with two
columns in it (createTable()). The subroutine insertNext() is used to insert
a string into the current table cell and advance the table cursor to the next field. It
is first employed to add the headings to the two columns. We then loop over all
properties (for i% = :..) and first insert the name of each of them. We then try
to figure out its value and convert it to a suitable string. If the property’s value is
itself an object, we use its dbg_Properties() method to display at least the
names of the object’s properties. If the property is a sequence, we loop over all of
its elements and perform the same value steps as for single values. Note, however,
that we can’t display arrays of arrays with this approach.

Sub InsertNextItem(what, oCursor, oTable)
Dim oCell As Object

sName = oCursor.getRangeName()
oCell = oTable.getCellByName(sName)
oCell.String = what
oCursor.goRight(1,FALSE)

End Sub

Subroutine InsertNextItem() expects a string (what), a table cursor (cursor)
and a table. It inserts the string at the current cursor position, changing the
adjustment to right if the string is a number. It then moves the table cursor one cell
to the right. If the current cell was the last one in this row, this moves the cursor to
the first cell on the next row.

Function CreateTable() as Object
oDocument = ThisComponent
oTextTable = oDocument.createInstance("com.sun.star.text.TextTable")
CreateTable = oTextTable

End Function
Function CreateTextDocument() as object

dim noargs()
CreateTextDocument = StarDesktop.loadComponentFromURL(url,"_blank", 0, noargs)

End Function

The subroutines CreateTable() and CreateTextDocument() do exactly what
their names suggest. We are mainly using subroutines here to keep the main
routine somewhat shorter.

Code Complete 123

124 StarOffice Programmer’s Tutorial ♦ May 2000

APPENDIX A

The UML Class Diagrams

Class diagrams show the static structure of the model, in particular, the things that
exist (such as classes and types), their internal structure, and their relationships to
other things. Class diagrams do not show temporal or behavioral information. All
class diagrams shown below are based on the UML 1.1 notation.

A.1 UML
The Unified Modeling Language (UML) is a language for specifying, visualizing and
documenting the artifacts of software systems. It represents a collection of the best
engineering practices that have proven successful in the modeling of large and
complex systems. The UML 1.1 specification was adopted by the Object Management
Group (OMG) as an official standard. The websites of Rational Software Corporation
and the OMG provide detailed information concerning the specification of UML.

A.2 Stereotypes used by StarOffice API
UML allows you to extend the model by making use of stereotypes. A stereotype is,
in effect, a new class of modeling elements that is introduced at modeling time. It
represents a subclass of an existing modeling element with the same form but with a
different intent. Generally a stereotype represents a usage distinction.

There are two stereotypes of classes, which are important to StarOffice API. Whereas
interfaces are already part of the UML model, the stereotype service has been added

125

by StarOffice API to reflect the definition of StarOffice API services described in
this book.

In the figure below you see both an interface and a service. XSearchDescriptor
provides operations to set and retrieve a string to search for. This set of operations
might be useful to various services. The service SearchDescriptor specifies such an
application. It describes a piece of software which supports the operations of
interface XSearchDescriptor and is able to handle properties like SearchCaseSensitiv
or SearchRegularExpression. These properties hold further information about the
search string and how to interpret its content.

Figure A–1 StarOffice API stereotypes service and interface

A.3 Interface
An interface is a specifier for the externally-visible operations of a class, component,
or other entity without specification of internal structure. Interfaces do not have
implementation; they lack attributes, states, or associations; they only have
operations. An interface is formally equivalent to an abstract class with no attributes
and no methods and only abstract operations, but Interface is a peer of Class within
the UML metamodel; both are Classifiers.

126 StarOffice Programmer’s Tutorial ♦ May 2000

A.4 Service
A service is a subclass of the UML Classifier Class. Like an interface, it is an abstract
class and does not have an implementation, but it does have an internal structure,
attributes and associations. Services are designed for a more specific purpose than
interfaces and gain their external behavior through properties and the interfaces they
support.

A.5 Relations used in the Class Diagrams

Figure A–2 Generalization

Generalization is the relationship between a more general element and a more specific
element that is fully consistent with the first element and that adds additional
information. Generalization is shown as a solid-line path from the more specific
element to the more general element, with a large hollow triangle at the end of the
path where it meets the more general element. The arrow from A to B is read as "A
inherits from B." This includes "Only A knows B, B does not need to know anything
about A." In every-day-language, this relationship would be expressed as "is a": "A is
an B" or "a cat is an animal" .

The UML Class Diagrams 127

Figure A–3 Realizes relationship

The realizes relationship from a class to an interface that it supports is shown by a
dashed line with a solid triangular arrowhead (a "dashed generalization symbol").
This is the same notation used to indicate realization of a type by an implementation
class. In fact, this symbol can be used between any two classifier symbols, with the
meaning that the client (the one at the tail of the arrow) supports at least all of the
operations defined in the supplier (the one at the head of the arrow). StarOffice API
diagrams make use of this relationship to indicate that a client service extends
another service by the interfaces and properties of the supplier. In the example the
arrow from C to D is read as "Service C realizes or extends service D." Service
TextDocument offers the basic functionality common to all documents , descibed as
service OfficeDocument, by properties and interfaces, which are specific to text
documents.

Figure A–4 Binary association

A binary association is an association among exactly two classes (including the
possibility of a reflexive association from a class to itself). it is drawn as a solid path
connecting two class symbols. A hollow diamond may be attached to the end of the
path to indicate aggregation. The diamond is attached to the class that is the

128 StarOffice Programmer’s Tutorial ♦ May 2000

aggregate. In every-day-language,this relationship would be expressed as "is part of"
or "has": "A TextDocument has Text" or "Cells are part of a CellRange".

Figure A–5 Dependency relationship

A dependency indicates a semantic relationship between two or more model elements.
It relates the model elements themselves. In most cases this relationship indicates
that one object uses another. (e.g. instantiating an object of another class). A
dependency is shown as a dashed arrow between two model elements. The model
element at the tail of the arrow depends on the model element at the arrowhead. In
the figure above you read the association as "A DatabaseConnection creates a
DatabaseStatement". In case you are in need to create a service DatabaseStatement,
ask a DatabaseConnection, it will create one for you.

The UML Class Diagrams 129

130 StarOffice Programmer’s Tutorial ♦ May 2000

Glossary

BASIC Beginners all purpose simple instruction code: One of the oldest
and easiest to learn programming languages.

Cell The smallest addressable part of a spreadsheet or a table. A cell can
contain text, a number or a formula.

CSV Comma
Separated Value

A format used to store tabular data in an independent form. The
columns need not be separated by commas anymore, most
programs permit to choose the separator freely.

Cursor Object that permits movement in a document. Depending on the
document’s type, different cursors are available.

Event Something that happens inside or outside of a program outside of
the normal flow of control. Events can not be foreseen, programs
wanting to react to them have to install event handlers that are
triggered when an event is received. Typical events are a key press
or the movement of the mouse.

GUI Graphical
User Interface

The menus, dialogs, buttons etc. used to tell a program what it
should do.

MIME
Multipurpose
Internet Mail
Extension

Textual definitions first used in email to permit the inclusion of
binary documents. For example, "application/
vnd.sun.staroffice.writer" indicates that the following document is to
be used with Starwriter. Note that not all MIME types are
standardized.

Property Characteristic of an object. Properties have a name by which their
value can be inquired and possibly set.

Range Part of a document that can be spanned by a cursor.

131

Service Abstract concept providing interfaces and properties. All
implementations of the same service provide the same interfaces.

Shape The abstract concept of a graphic object. Different types of shapes
are rectangles, ellipses, text, polygons, etc.

SQLStructured
Query Language

A language used to insert, update, delete and retrieve data from
relational databases. Although SQL is normed, each database
implements its own extensions.

Style The collection of attributes applied to a particular part of a
document. For example, a paragraph style specifies the font, the
linespacing, the justification, the indentation and other aspects used
to format a paragraph.

TextRange A part of a text described by a text cursor. The range can consist only
of a text position if the start and end position of the cursor coincide.

UNO Universal
Network Objects

Basic services such as the ServiceManager, Property APIs etc used
by StarOffice API.

URL Universal
Resource Locator

String describing an object on any computer in the internet. http:/
/www.sun.com/index.html is an URL pointing to the file
index.html on the computer www.sun.com. http indicates the
service used to access the object, other services are ftp or news.

132 StarOffice Programmer’s Tutorial ♦ May 2000

	StarOffice Programmer™s Tutorial
	Contents
	1. Introduction
	1.1 What this book is about
	1.2 Who should read this book
	1.3 What is StarOffice API
	1.4 How you can use StarOffice API
	1.5 Where to find additional information
	1.6 Typographic conventions

	2. StarOffice API - Concepts
	2.1 Services and Interfaces
	2.2 Modules
	2.3 Components

	3. Using StarOffice API - Basics
	3.1 Getting a Service
	3.1.1 Independent Services
	3.1.2 Context-dependent services
	3.1.3 Service Factories
	3.1.4 Which services does StarOffice API provide

	3.2 Properties
	3.3 Collections and Containers
	3.3.1 Named access
	3.3.2 Index access
	3.3.3 Enumeration access

	3.4 Events
	3.5 Understanding the StarOffice API Reference Manual
	3.5.1 Properties
	3.5.2 Types
	3.5.3 Constants
	3.5.4 URLs

	4. Using StarOffice API - Building blocks
	4.1 Styles
	4.1.1 Style basics
	4.1.2 Finding a suitable style
	4.1.3 Defining your own style
	4.1.4 Hard formatting
	4.1.5 Headers, footers and tab stops

	4.2 Importing, Exporting and Printing
	4.2.1 Importing other Formats
	4.2.2 Saving and exporting documents
	4.2.3 Printing

	4.3 Text
	4.3.1 The structure of text documents
	4.3.2 Moving around
	4.3.3 Inserting and Changing text
	4.3.4 Inserting paragraph breaks, special characters, and page breaks
	4.3.5 Searching and replacing
	4.3.6 Using regular expressions
	4.3.7 Inserting tables, frames, etc.
	4.3.8 Locating text content

	4.4 Sheet
	4.4.1 Using Cells and Ranges
	4.4.2 Formatting cells
	4.4.3 Drawing a Chart from Data

	4.5 Drawing
	4.5.1 Creating simple shapes
	4.5.2 Making things easier
	4.5.3 Grouping objects
	4.5.4 Creating sophisticated shapes
	4.5.5 Manipulating shapes

	5. Code Complete
	5.1 Text
	5.1.1 Modifying text automatically
	5.1.2 Creating an index

	5.2 Sheet
	5.2.1 Adapting to Euroland

	5.3 Drawing
	5.3.1 Import/ Export of ASCII files

	5.4 Stock quotes updater
	5.4.1 Retrieving URLs
	5.4.2 Updating the tables
	5.4.3 Updating the chart

	5.5 Troubleshooting
	5.5.1 Debugging
	5.5.2 Displaying the object details

	A. The UML Class Diagrams
	A.1 UML
	A.2 Stereotypes used by StarOffice API
	A.3 Interface
	A.4 Service
	A.5 Relations used in the Class Diagrams

	Glossary

